-
Notifications
You must be signed in to change notification settings - Fork 2
/
train.py
329 lines (274 loc) · 11.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
from typing import Tuple, List, Text, Dict, Any, Iterator, Union, Sized, Callable, cast
import argparse
from datetime import datetime
import sys
sys.path.append("/usr/local/Cellar/opencv3/3.2.0/lib/python3.5/site-packages/") # mac opencv path
import cv2
import numpy as np
np.random.seed(2017) # for reproducibility
import os
#os.environ['KERAS_BACKEND'] = 'theano'
#os.environ["THEANO_FLAGS"] = "exception_verbosity=high,optimizer=None,device=cpu"
#os.environ['THEANO_FLAGS']='mode=FAST_RUN,device=cpu,floatX=float32,optimizer=fast_compile'
os.environ['KERAS_BACKEND'] = 'tensorflow'
from keras.backend import set_image_data_format
# keras.backend.backend()
# keras.backend.set_epsilon(1e-07)
# keras.backend.epsilon()
# keras.backend.set_floatx('float32')
# keras.backend.floatx()
# set_image_data_format('channels_first') # theano
set_image_data_format("channels_last")
# keras.backend.image_data_format()
from keras.models import model_from_json
from keras.callbacks import ModelCheckpoint, Callback, TensorBoard
from keras.optimizers import SGD, Adam
from keras.backend import tensorflow_backend
import keras.backend as K
from chainer.iterators import MultiprocessIterator, SerialIterator
from model_segnet import create_segnet
from camvid import get_iter as get_camvid
from mscoco import get_iter as get_coco
def convert_to_keras_batch(iter: Iterator[List[Tuple[np.ndarray, np.ndarray]]]) -> Iterator[Tuple[np.ndarray, np.ndarray]] :
while True:
batch = iter.__next__() # type: List[Tuple[np.ndarray, np.ndarray]]
xs = [x for (x, _) in batch] # type: List[np.ndarray]
ys = [y for (_, y) in batch] # type: List[np.ndarray]
_xs = np.array(xs) # (n, 480, 360, 3)
_ys = np.array(ys) # (n, 480, 360, n_classes)
yield (_xs, _ys)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='SegNet trainer from CamVid')
parser.add_argument("--indices", action='store_true', help='use indices pooling')
parser.add_argument("--epochs", action='store', type=int, default=1000, help='epochs')
parser.add_argument("--resume", action='store', type=str, default="", help='*_weights.hdf5')
parser.add_argument("--initial_epoch", action='store', type=int, default=0, help='initial_epoch')
parser.add_argument("--coco", action='store_true', help='use mscoco dataset')
parser.add_argument("--ker_init", action='store', type=str, default="glorot_uniform", help='conv2D kernel initializer')
parser.add_argument("--lr", action='store', type=float, default=0.001, help='learning late')
parser.add_argument("--optimizer", action='store', type=str, default="adam", help='adam|nesterov')
args = parser.parse_args() # type: argparse.Namespace
name = datetime.now().strftime("%Y-%m-%d-%H-%M-%S")
if args.indices: name += "_indices"
if args.coco: name += "_coco"
name += "_" + args.loss
name += "_" + args.optimizer
name += "_lr" + str(args.lr)
name += "_" + args.ker_init
print("name: ", name)
if args.coco:
train, valid = get_coco() # type: Tuple[Iterator[np.ndarray], Iterator[np.ndarray]]
else:
train, valid = get_camvid()
train_iter = convert_to_keras_batch(
#SerialIterator(
MultiprocessIterator(
train,
batch_size=8,
n_processes=12,
n_prefetch=120,
shared_mem=1000*1000*5
)
) # type: Iterator[Tuple[np.ndarray, np.ndarray]]
valid_iter = convert_to_keras_batch(
#SerialIterator(
MultiprocessIterator(
valid,
batch_size=8,
#repeat=False,
shuffle=False,
n_processes=12,
n_prefetch=120,
shared_mem=1000*1000*5
)
) # type: Iterator[Tuple[np.ndarray, np.ndarray]]
old_session = tensorflow_backend.get_session()
with K.tf.Graph().as_default():
session = K.tf.Session("")
tensorflow_backend.set_session(session)
tensorflow_backend.set_learning_phase(1)
loss_weights = None # type: List[float]
# [0.2595, 0.1826, 4.5640, 0.1417, 0.9051, 0.3826, 9.6446, 1.8418, 0.6823, 6.2478, 7.3614], # https://github.com/alexgkendall/SegNet-Tutorial/blob/master/Models/bayesian_segnet_train.prototxt#L1615
n_classes = 12
segnet = create_segnet((480, 360, 3), n_classes, args.indices, args.ker_init)
if args.optimizer == "nesterov":
optimizer = SGD(lr=args.lr, momentum=0.9, decay=0.0005, nesterov=True)
else:
optimizer = Adam(lr=args.lr, beta_1=0.5, beta_2=0.999, epsilon=1e-08, decay=0.0)
loss = "categorical_crossentropy"
metrics = ['accuracy']
segnet.compile(
optimizer=optimizer,
loss=loss,
metrics=metrics,
loss_weights=loss_weights
)
if len(args.resume) > 0:
segnet.load_weights(args.resume)
with open(name+'_model.json', 'w') as f: f.write(segnet.to_json())
callbacks = [] # type: List[Callback]
callbacks.append(ModelCheckpoint(
name+"_weights.epoch{epoch:04d}-val_loss{val_loss:.2f}.hdf5",
verbose=1,
save_best_only=True,
save_weights_only=True,
period=1,
))
callbacks.append(TensorBoard(
log_dir=name+'_log',
histogram_freq=1,
write_graph=False,
write_images=False,
))
hist = segnet.fit_generator(
generator=train_iter,
steps_per_epoch=len(cast(Sized, train)),
epochs=args.epochs,
verbose=1,
callbacks=callbacks,
validation_data=valid_iter,
validation_steps=2,
#class_weight=class_weight,
initial_epoch=args.initial_epoch,
)
with open(name+'_history.json', 'w') as f: f.write(repr(hist.history))
segnet.save_weights(name+'_weight_final.hdf5')
tensorflow_backend.set_session(old_session)
exit()
import time
import keras
import SegNet
def predict(model: Union[keras.engine.training.Model, None]):
if model == None:
start = time.time()
model = SegNet.load()
end = time.time()
print('%30s' % 'load_weights in ', str((end - start)*1000), 'ms')
start = time.time()
frame = np.einsum('hwc->whc', normalized(cv2.imread("SegNet-Tutorial/CamVid/test/Seq05VD_f02370.png")))
end = time.time()
print('%30s' % 'imread in ', str((end - start)*1000), 'ms')
start = time.time()
output = model.predict_proba(frame)
end = time.time()
print('%30s' % 'predict_proba in ', str((end - start)*1000), 'ms')
start = time.time()
labeled = np.argmax(output[0], axis=1)
img = np.einsum('whc->hwc', visualize(labeled))
cv2.imwrite("output.png", img)
end = time.time()
print('%30s' % 'imwrite in ', str((end - start)*1000), 'ms')
def visualize(labeled: np.ndarray) -> np.ndarray:
'''
labeled: (w, h, c=0~11)
'''
r = labeled.copy()
g = labeled.copy()
b = labeled.copy()
label_colours = create_label_colors()
for l in range(0,11):
r[labeled==l]=label_colours[l,0]
g[labeled==l]=label_colours[l,1]
b[labeled==l]=label_colours[l,2]
rgb = np.zeros((labeled.shape[0], labeled.shape[1], 3))
rgb[:,:,0] = (r/255.0)#[:,:,0]
rgb[:,:,1] = (g/255.0)#[:,:,1]
rgb[:,:,2] = (b/255.0)#[:,:,2]
return rgb # (w, h, c)
# for CamVid
# https://github.com/alexgkendall/SegNet-Tutorial/blob/master/Models/segnet_train.prototxt
CLASS_WEIGHT = [0.2595, 0.1826, 4.5640, 0.1417, 0.5051, 0.3826, 9.6446, 1.8418, 6.6823, 6.2478, 3.0, 7.3614]
# for CamVid
def create_label_colors() -> np.ndarray:
Sky = [128,128,128]
Building = [128,0,0]
Pole = [192,192,128]
Road_marking = [255,69,0]
Road = [128,64,128]
Pavement = [60,40,222]
Tree = [128,128,0]
SignSymbol = [192,128,128]
Fence = [64,64,128]
Car = [64,0,128]
Pedestrian = [64,64,0]
Bicyclist = [0,128,192]
Unlabelled = [0,0,0]
label_colours = np.array([ Sky, Building, Pole, Road, Pavement, Tree, SignSymbol, Fence, Car, Pedestrian, Bicyclist, Unlabelled ])
return label_colours
# for CamVid
def batch_len(batch_size: int) -> int :
with open('./SegNet-Tutorial/CamVid/train.txt', 'r') as f:
return int(len(f.readlines())/batch_size)
def create_batch(batch_size: int=8, nb_class: int=12, ignored: int=11) -> Iterator[Tuple[np.ndarray, np.ndarray]] :
return create_gen('./SegNet-Tutorial/CamVid/train.txt', batch_size, nb_class, ignored)
def create_valid(batch_size: int=8, nb_class: int=12, ignored: int=11) -> Iterator[Tuple[np.ndarray, np.ndarray]] :
return create_gen('./SegNet-Tutorial/CamVid/test.txt', batch_size, nb_class, ignored)
import random
def create_gen(filename: str, batch_size: int, nb_class: int, ignored: int) -> Iterator[Tuple[np.ndarray, np.ndarray]] :
'''
-> (float32, float32)
'''
with open(filename, 'r') as f:
lines = f.readlines()
pairs = [cast(Tuple[str, str], tuple(line.strip().replace('/SegNet', './SegNet-Tutorial').split(' ', 1))) for line in lines] # type: List[Tuple[str, str]]
while True:
to_shuffle = pairs[:]
random.shuffle(to_shuffle)
shuffled = iter(to_shuffle)
while True:
batch = [a for (a, b) in zip(shuffled, range(batch_size))]
if len(batch) == 0: break
loaded = [proc(preprocess_input(x), preprocess_teacher(y, nb_class, ignored)) for (x, y) in batch] # type: List[Tuple[np.ndarray, np.ndarray]]
_x = np.array([x for (x, y) in loaded]) # (n, 480, 360, 3)
_y = np.array([y for (x, y) in loaded]) # (n, 480, 360, nb_class)
if _x.shape[0] != batch_size: break
yield (_x, _y)
def proc(x: np.ndarray, y: np.ndarray) -> Tuple[np.ndarray, np.ndarray] :
'''
data augmentation
uint8 -> float32
((w, h, 3), (w, h, 12))-> ((w, h, 3), (w, h, 12))
'''
if np.random.randint(0, 2) == 1:
x = cv2.flip(x, 1)
y = cv2.flip(y, 1)
return (x.astype("float32"), y.astype("float32"))
def preprocess_input(filename: str) -> np.ndarray:
'''
-> uint8
-> (w, h, 3)
'''
img = np.einsum('hwc->whc', cv2.cvtColor(cv2.imread(filename), cv2.COLOR_BGR2RGB))
_img = normalized(img)
return _img
def preprocess_teacher(filename: str, nb_class: int, ignored: int) -> np.ndarray:
'''
labeling
-> uint8
-> (w, h, 12)
'''
# label は RGB すべてに 0~255 の範囲のクラス値が入っている
img = np.einsum('hw->wh', cv2.imread(filename, cv2.IMREAD_GRAYSCALE))
(w, h) = img.shape # == (480, 360)
# https://github.com/pfnet-research/chainer-segnet/blob/ca84cd694351eeaff357656e76baa310dc455e66/lib/camvid.py#L63
#img[np.where(img == ignored)] = -1 # ラベル ignored は Unlabelled
_img = np.zeros((w, h, nb_class), dtype=np.uint8) # == (480, 360, nb_class)
# https://github.com/pradyu1993/segnet/blob/master/segnet.py#L50
for i in range(w):
for j in range(h):
_img[i, j, img[i][j]] = 1
return _img
def normalized(rgb: np.ndarray) -> np.ndarray:
'''
equalizeHist for RGB
return rgb/255.0
uint8 -> uint8
'''
norm = np.ones(rgb.shape, rgb.dtype)*255
r=rgb[:,:,0]
g=rgb[:,:,1]
b=rgb[:,:,2]
norm[:,:,0]=cv2.equalizeHist(r)
norm[:,:,1]=cv2.equalizeHist(g)
norm[:,:,2]=cv2.equalizeHist(b)
return norm