From e176ebbfd74c00fde4bb57192821a83fd101f5ce Mon Sep 17 00:00:00 2001 From: SamuelBorden Date: Mon, 12 Aug 2024 09:29:13 -0700 Subject: [PATCH] Fixed dosctrings in step function --- src/pygama/math/functions/step.py | 12 ++++++------ 1 file changed, 6 insertions(+), 6 deletions(-) diff --git a/src/pygama/math/functions/step.py b/src/pygama/math/functions/step.py index ae7d4652c..60abca158 100644 --- a/src/pygama/math/functions/step.py +++ b/src/pygama/math/functions/step.py @@ -19,7 +19,7 @@ def nb_step_int(x: float, mu: float, sigma: float, hstep: float) -> np.ndarray: .. math:: - \int cdf(x, hstep, \mu, \sigma)\, dx = \sigma\left(\frac{x-\mu}{\sigma} + hstep \left(\frac{x-\mu}{\sigma}\text{erf}\left(\frac{x-\mu}{\sigma\sqrt{2}}\right) + \sqrt{\frac{2}{\pi}}\exp\left(-(\frac{x-\mu}{\sigma})^2/2\right) \right)\right) + \int cdf(x, hstep, \mu, \sigma)\, dx = \sigma\left(\frac{x-\mu}{\sigma} + hstep \left(\frac{x-\mu}{\sigma}\mathrm{erf}\left(\frac{x-\mu}{\sigma\sqrt{2}}\right) + \sqrt{\frac{2}{\pi}}\exp\left(-(\frac{x-\mu}{\sigma})^2/2\right) \right)\right) As a Numba JIT function, it runs slightly faster than @@ -62,7 +62,7 @@ def nb_unnorm_step_pdf(x: float, mu: float, sigma: float, hstep: float) -> float .. math:: - pdf(x, hstep, \mu, \sigma) = 1+ hstep\text{erf}\left(\frac{x-\mu}{\sigma\sqrt{2}}\right) + pdf(x, hstep, \mu, \sigma) = 1+ hstep\mathrm{erf}\left(\frac{x-\mu}{\sigma\sqrt{2}}\right) @@ -99,10 +99,10 @@ def nb_step_pdf( .. math:: - pdf(x, \text{x_lo}, \text{x_hi}, \mu, \sigma, hstep) = pdf(y=\frac{x-\mu}{\sigma}, step, \text{x_lo}, \text{x_hi}) = \frac{1+hstep\text{erf}\left(\frac{x-\mu}{\sigma\sqrt{2}}\right)}{\sigma\left[(y-y_{min}) +hstep\left(y\text{erf}(\frac{y}{\sqrt{2}})+\sqrt{\frac{2}{\pi}}e^{-y^2/2}-y_{min}\text{erf}(\frac{y_{min}}{\sqrt{2}})+\sqrt{\frac{2}{\pi}}e^{-y_{min}^2/2}\right)\right]} + pdf(x, \mathrm{x}_\mathrm{lo}, \mathrm{x}_\mathrm{hi}, \mu, \sigma, hstep) = pdf(y=\frac{x-\mu}{\sigma}, step, \mathrm{x}_\mathrm{lo}, \mathrm{x}_\mathrm{hi}) = \frac{1+hstep\mathrm{erf}\left(\frac{x-\mu}{\sigma\sqrt{2}}\right)}{\sigma\left[(y-y_{min}) +hstep\left(y\mathrm{erf}(\frac{y}{\sqrt{2}})+\sqrt{\frac{2}{\pi}}e^{-y^2/2}-y_{min}\mathrm{erf}(\frac{y_{min}}{\sqrt{2}})+\sqrt{\frac{2}{\pi}}e^{-y_{min}^2/2}\right)\right]} - Where :math:`y_{max} = \frac{\text{x_hi} - \mu}{\sigma}, y_{min} = \frac{\text{x_lo} - \mu}{\sigma}`. + Where :math:`y_{max} = \frac{\mathrm{x}_\mathrm{hi} - \mu}{\sigma}, y_{min} = \frac{\mathrm{x}_\mathrm{lo} - \mu}{\sigma}`. As a Numba JIT function, it runs slightly faster than 'out of the box' functions. @@ -147,10 +147,10 @@ def nb_step_cdf( .. math:: - cdf(x, \text{x_lo}, \text{x_hi}, \mu, \sigma, hstep) = cdf(y=\frac{x-\mu}{\sigma}, hstep, \text{x_lo}, \text{x_hi}) = \frac{(y-y_{min}) +hstep\left(y\text{erf}(\frac{y}{\sqrt{2}})+\sqrt{\frac{2}{\pi}}e^{-y^2/2}-y_{min}\text{erf}(\frac{y_{min}}{\sqrt{2}})+\sqrt{\frac{2}{\pi}}e^{-y_{min}^2/2}\right)}{\sigma\left[(y_{max}-y_{min}) +hstep\left(y_{max}\text{erf}(\frac{y_{max}}{\sqrt{2}})+\sqrt{\frac{2}{\pi}}e^{-y_{max}^2/2}-y_{min}\text{erf}(\frac{y_{min}}{\sqrt{2}})+\sqrt{\frac{2}{\pi}}e^{-y_{min}^2/2}\right)\right] } + cdf(x, \mathrm{x}_\mathrm{lo}, \mathrm{x}_\mathrm{hi}, \mu, \sigma, hstep) = cdf(y=\frac{x-\mu}{\sigma}, hstep, \mathrm{x}_\mathrm{lo}, \mathrm{x}_\mathrm{hi}) = \frac{(y-y_{min}) +hstep\left(y\mathrm{erf}(\frac{y}{\sqrt{2}})+\sqrt{\frac{2}{\pi}}e^{-y^2/2}-y_{min}\mathrm{erf}(\frac{y_{min}}{\sqrt{2}})+\sqrt{\frac{2}{\pi}}e^{-y_{min}^2/2}\right)}{\sigma\left[(y_{max}-y_{min}) +hstep\left(y_{max}\mathrm{erf}(\frac{y_{max}}{\sqrt{2}})+\sqrt{\frac{2}{\pi}}e^{-y_{max}^2/2}-y_{min}\mathrm{erf}(\frac{y_{min}}{\sqrt{2}})+\sqrt{\frac{2}{\pi}}e^{-y_{min}^2/2}\right)\right] } - Where :math:`y_{max} = \frac{\text{x_hi} - \mu}{\sigma}, y_{min} = \frac{\text{x_lo} - \mu}{\sigma}`. + Where :math:`y_{max} = \frac{\mathrm{x}_\mathrm{hi} - \mu}{\sigma}, y_{min} = \frac{\mathrm{x}_\mathrm{lo} - \mu}{\sigma}`. As a Numba JIT function, it runs slightly faster than 'out of the box' functions.