forked from albanie/collaborative-experts
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.py
227 lines (197 loc) · 8.61 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import copy
import pickle
import random
import logging
import argparse
from typing import Tuple, Dict
from pathlib import Path
import numpy as np
import torch
from mergedeep import Strategy, merge
from typeguard import typechecked
import model as module_arch
import model.metric as module_metric
import utils.visualizer as module_vis
import data_loader.data_loaders as module_data
from trainer import verbose, ctxt_mgr
from utils.util import compute_dims, compute_trn_config, update_src_web_video_dir
from parse_config import ConfigParser
@typechecked
def compress_predictions(query_masks: np.ndarray, sims: np.ndarray, topk: int = 10):
"""We store the indices of the top-k predictions, rather than the full similarity
matrix, to reduce storage requirements.
NOTE: The similarity matrix contains `num_queries x num_videos` elements, where
`num_queries = num_videos x max_num_queries_per_video`. We first mask out
locations in the similarity matrix that correspond to invalid queries (these are
produced by videos with fewer than `max_num_queries_per_video` descriptions).
"""
# validate the input shapes
assert query_masks.ndim == 2, "Expected query_masks to be a matrix"
query_num_videos, query_max_per_video = query_masks.shape
sims_queries, sims_num_videos = sims.shape
msg = (f"Expected sims and query masks to represent the same number of videos "
f"(found {sims_num_videos} v {query_num_videos}")
assert query_num_videos == sims_num_videos, msg
msg = (f"Expected sims and query masks to represent the same number of queries "
f"(found {sims_queries} v {query_num_videos * query_max_per_video}")
assert query_max_per_video * query_num_videos == sims_queries, msg
valid_sims = sims[query_masks.flatten().astype(np.bool)]
ranks = np.argsort(-valid_sims, axis=1)
return ranks[:, :topk]
@typechecked
def get_model_and_data_loaders(
config: ConfigParser,
logger: logging.Logger,
ckpt_path: Path,
) -> Tuple[torch.nn.Module, module_data.ExpertDataLoader]:
expert_dims, raw_input_dims, text_dim = compute_dims(config)
data_loaders = config.init(
name='data_loader',
module=module_data,
logger=logger,
raw_input_dims=raw_input_dims,
challenge_mode=config.get("challenge_mode", False),
text_dim=text_dim,
text_feat=config["experts"]["text_feat"],
text_agg=config["experts"]["text_agg"],
use_zeros_for_missing=config["experts"].get("use_zeros_for_missing", False),
task=config.get("task", "retrieval"),
eval_only=True,
distil_params=config.get("distil_params", None),
training_file=config.get("training_file", None),
caption_masks=config.get("caption_masks", None),
ce_shared_dim=config["experts"].get("ce_shared_dim", None),
)
trn_config = compute_trn_config(config)
model = config.init(
name='arch',
module=module_arch,
trn_config=trn_config,
expert_dims=expert_dims,
text_dim=text_dim,
disable_nan_checks=config["disable_nan_checks"],
task=config.get("task", "retrieval"),
ce_shared_dim=config["experts"].get("ce_shared_dim", None),
feat_aggregation=config["data_loader"]["args"]["feat_aggregation"],
trn_cat=config["data_loader"]["args"].get("trn_cat", 0),
)
ckpt_path = config._args.resume
logger.info(f"Loading checkpoint: {ckpt_path} ...")
checkpoint = torch.load(ckpt_path)
state_dict = checkpoint['state_dict']
if config['n_gpu'] > 1:
model = torch.nn.DataParallel(model)
# support backwards compatibility
deprecated = ["ce.moe_fc_bottleneck1", "ce.moe_cg", "ce.moe_fc_proj"]
for mod in deprecated:
for suffix in ("weight", "bias"):
key = f"{mod}.{suffix}"
if key in state_dict:
print(f"WARNING: Removing deprecated key {key} from model")
state_dict.pop(key)
model.load_state_dict(state_dict)
return model, data_loaders
def evaluation(config, logger=None, trainer=None):
if logger is None:
logger = config.get_logger('test')
if getattr(config._args, "eval_from_training_config", False):
eval_conf = copy.deepcopy(config)
merge(eval_conf._config, config["eval_settings"], strategy=Strategy.REPLACE)
config = eval_conf
logger.info("Running evaluation with configuration:")
logger.info(config)
# Set the random initial seeds
seed = config["seed"]
logger.info(f"Setting experiment random seed to {seed}")
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
model, data_loaders = get_model_and_data_loaders(
config=config,
logger=logger,
ckpt_path=Path(config._args.resume),
)
logger.info(model)
update_src_web_video_dir(config)
visualizer = config.init(
name='visualizer',
module=module_vis,
exp_name=config._exper_name,
web_dir=config._web_log_dir,
)
metrics = [getattr(module_metric, met) for met in config['metrics']]
challenge_mode = config.get("challenge_mode", False)
challenge_msg = (
"\n"
"Evaluation ran on challenge features. To obtain a score, upload the similarity"
"matrix for each dataset to the test server after running the "
"`misc/cvpr2020-challenge/prepare_submission.py` script and following the "
"instructions at: "
"https://www.robots.ox.ac.uk/~vgg/challenges/video-pentathlon/"
"\n"
)
# prepare model for testing. Note that some datasets fail to fit the retrieval
# set on the GPU, so we run them on the CPU
if torch.cuda.is_available() and not config.get("disable_gpu", True):
device = "cuda"
else:
device = "cpu"
logger.info(f"Running evaluation on {device}")
model = model.to(device)
model.eval()
with torch.no_grad():
samples, meta = data_loaders["retrieval"]
# To use the nan-checks safely, we need make temporary copies of the data
disable_nan_checks = config._config["disable_nan_checks"]
with ctxt_mgr(samples, device, disable_nan_checks) as valid:
output = model(**valid)
sims = output["cross_view_conf_matrix"].data.cpu().float().numpy()
dataset = data_loaders.dataset_name
if challenge_mode:
split = data_loaders.dataloaders["dataset"].split_name
prediction_path = config._log_dir / f"{dataset}-{split}-predictions.csv"
compressed_preds = compress_predictions(
query_masks=meta["query_masks"],
sims=sims,
)
np.savetxt(prediction_path, compressed_preds, delimiter=',', fmt="%d")
print(f"Saved similarity matrix predictions to {prediction_path}")
print(challenge_msg)
return
nested_metrics = {}
for metric in metrics:
metric_name = metric.__name__
res = metric(sims, query_masks=meta["query_masks"])
verbose(epoch=0, metrics=res, name=dataset, mode=metric_name)
if trainer is not None:
if not trainer.mini_train:
trainer.writer.set_step(step=0, mode="val")
# avoid tensboard folding by prefixing
metric_name_ = f"test_{metric_name}"
trainer.log_metrics(res, metric_name=metric_name_, mode="val")
nested_metrics[metric_name] = res
if data_loaders.num_test_captions == 1:
visualizer.visualize_ranking(
sims=sims,
meta=meta,
epoch=0,
nested_metrics=nested_metrics,
)
log = {}
for subkey, subval in nested_metrics.items():
for subsubkey, subsubval in subval.items():
log[f"test_{subkey}_{subsubkey}"] = subsubval
for key, value in log.items():
logger.info(" {:15s}: {}".format(str(key), value))
if __name__ == '__main__':
args = argparse.ArgumentParser(description='PyTorch Template')
args.add_argument('--config', default=None, type=str, help="config file path")
args.add_argument('--resume', type=Path, help='path to checkpoint for evaluation')
args.add_argument('--device', help='indices of GPUs to enable')
args.add_argument('--eval_from_training_config', action="store_true",
help="if true, evaluate directly from a training config file.")
args.add_argument("--custom_args", help="qualified key,val pairs")
eval_config = ConfigParser(args)
cfg_msg = "For evaluation, a model checkpoint must be specified via the --resume flag"
assert eval_config._args.resume, cfg_msg
evaluation(eval_config)