diff --git a/Std/Data/List/Lemmas.lean b/Std/Data/List/Lemmas.lean index 521d86647c..a8a7baa94b 100644 --- a/Std/Data/List/Lemmas.lean +++ b/Std/Data/List/Lemmas.lean @@ -1367,6 +1367,13 @@ theorem any_eq_not_all_not (l : List α) (p : α → Bool) : l.any p = !l.all (! theorem all_eq_not_any_not (l : List α) (p : α → Bool) : l.all p = !l.any (!p .) := by simp only [not_any_eq_all_not, Bool.not_not] +/-! ### all₂ -/ + +theorem beq_eq_all₂ [BEq α] (l₁ l₂ : List α) : (l₁ == l₂) = l₁.all₂ BEq.beq l₂ := by + simp [BEq.beq] + induction l₁ generalizing l₂ <;> cases l₂ <;> simp [List.beq, all₂] + next a _ ih b _ => cases a == b <;> simp [ih] + /-! ### reverse -/ @[simp] theorem mem_reverseAux {x : α} : ∀ {as bs}, x ∈ reverseAux as bs ↔ x ∈ as ∨ x ∈ bs diff --git a/Std/Data/RBMap/Alter.lean b/Std/Data/RBMap/Alter.lean index 6e6d99b455..550673ddc9 100644 --- a/Std/Data/RBMap/Alter.lean +++ b/Std/Data/RBMap/Alter.lean @@ -71,8 +71,7 @@ theorem insertNew_eq_insert (h : zoom (cmp v) t = (nil, path)) : theorem zoom_del {t : RBNode α} : t.zoom cut path = (t', path') → - path.del (t.del cut) (match t with | node c .. => c | _ => red) = - path'.del t'.delRoot (match t' with | node c .. => c | _ => red) := by + path.del (t.del cut) t.isBlack = path'.del t'.delRoot t'.isBlack := by unfold RBNode.del; split <;> simp [zoom] · intro | rfl, rfl => rfl · next c a y b => @@ -279,19 +278,19 @@ protected theorem Ordered.fill : ∀ {path : Path α} {t}, fun ⟨hp, ⟨ax, xb, ha, hb⟩, ⟨xp, ap, bp⟩⟩ => ⟨⟨hp, ax, xp, ap, ha⟩, hb, ⟨xb, bp⟩⟩, fun ⟨⟨hp, ax, xp, ap, ha⟩, hb, ⟨xb, bp⟩⟩ => ⟨hp, ⟨ax, xb, ha, hb⟩, ⟨xp, ap, bp⟩⟩⟩ -theorem _root_.Std.RBNode.Ordered.zoom' {t : RBNode α} {path : Path α} +protected theorem _root_.Std.RBNode.Ordered.zoom' {t : RBNode α} {path : Path α} (ht : t.Ordered cmp) (hp : path.Ordered cmp) (tp : t.All (path.RootOrdered cmp)) (pz : path.Zoomed cut) (eq : t.zoom cut path = (t', path')) : t'.Ordered cmp ∧ path'.Ordered cmp ∧ t'.All (path'.RootOrdered cmp) ∧ path'.Zoomed cut := have ⟨hp', ht', tp'⟩ := Ordered.fill.1 <| zoom_fill eq ▸ Ordered.fill.2 ⟨hp, ht, tp⟩ ⟨ht', hp', tp', zoom_zoomed₂ eq pz⟩ -theorem _root_.Std.RBNode.Ordered.zoom {t : RBNode α} +protected theorem _root_.Std.RBNode.Ordered.zoom {t : RBNode α} (ht : t.Ordered cmp) (eq : t.zoom cut = (t', path')) : t'.Ordered cmp ∧ path'.Ordered cmp ∧ t'.All (path'.RootOrdered cmp) ∧ path'.Zoomed cut := ht.zoom' (path := .root) ⟨⟩ (.trivial ⟨⟩) ⟨⟩ eq -theorem Ordered.ins : ∀ {path : Path α} {t : RBNode α}, +protected theorem Ordered.ins : ∀ {path : Path α} {t : RBNode α}, t.Ordered cmp → path.Ordered cmp → t.All (path.RootOrdered cmp) → (path.ins t).Ordered cmp | .root, t, ht, _, _ => Ordered.setBlack.2 ht | .left red parent x b, a, ha, ⟨hp, xb, xp, bp, hb⟩, H => by @@ -305,18 +304,18 @@ theorem Ordered.ins : ∀ {path : Path α} {t : RBNode α}, unfold ins; have ⟨xb, bp⟩ := All_and.1 H exact hp.ins (ha.balance2 ax xb hb) (balance2_All.2 ⟨xp, ap, bp⟩) -theorem Ordered.insertNew {path : Path α} (hp : path.Ordered cmp) (vp : path.RootOrdered cmp v) : - (path.insertNew v).Ordered cmp := +protected theorem Ordered.insertNew {path : Path α} + (hp : path.Ordered cmp) (vp : path.RootOrdered cmp v) : (path.insertNew v).Ordered cmp := hp.ins ⟨⟨⟩, ⟨⟩, ⟨⟩, ⟨⟩⟩ ⟨vp, ⟨⟩, ⟨⟩⟩ -theorem Ordered.insert : ∀ {path : Path α} {t : RBNode α}, +protected theorem Ordered.insert : ∀ {path : Path α} {t : RBNode α}, path.Ordered cmp → t.Ordered cmp → t.All (path.RootOrdered cmp) → path.RootOrdered cmp v → t.OnRoot (cmpEq cmp v) → (path.insert t v).Ordered cmp | _, nil, hp, _, _, vp, _ => hp.insertNew vp | _, node .., hp, ⟨ax, xb, ha, hb⟩, ⟨_, ap, bp⟩, vp, xv => Ordered.fill.2 ⟨hp, ⟨ax.imp xv.lt_congr_right.2, xb.imp xv.lt_congr_left.2, ha, hb⟩, vp, ap, bp⟩ -theorem Ordered.del : ∀ {path : Path α} {t : RBNode α} {c}, +protected theorem Ordered.del : ∀ {path : Path α} {t : RBNode α} {c}, t.Ordered cmp → path.Ordered cmp → t.All (path.RootOrdered cmp) → (path.del t c).Ordered cmp | .root, t, _, ht, _, _ => Ordered.setBlack.2 ht | .left _ parent x b, a, red, ha, ⟨hp, xb, xp, bp, hb⟩, H => by @@ -330,7 +329,7 @@ theorem Ordered.del : ∀ {path : Path α} {t : RBNode α} {c}, unfold del; have ⟨xb, bp⟩ := All_and.1 H exact hp.del (ha.balRight ax xb hb) (ap.balRight xp bp) -theorem Ordered.erase : ∀ {path : Path α} {t : RBNode α}, +protected theorem Ordered.erase : ∀ {path : Path α} {t : RBNode α}, path.Ordered cmp → t.Ordered cmp → t.All (path.RootOrdered cmp) → (path.erase t).Ordered cmp | _, nil, hp, ht, tp => Ordered.fill.2 ⟨hp, ht, tp⟩ | _, node .., hp, ⟨ax, xb, ha, hb⟩, ⟨_, ap, bp⟩ => hp.del (ha.append ax xb hb) (ap.append bp) diff --git a/Std/Data/RBMap/Basic.lean b/Std/Data/RBMap/Basic.lean index 0866602ce1..9e2f0294d3 100644 --- a/Std/Data/RBMap/Basic.lean +++ b/Std/Data/RBMap/Basic.lean @@ -686,9 +686,19 @@ if it returns `.eq` we will remove the element. (The function `cmp k` for some key `k` is a valid cut function, but we can also use cuts that are not of this form as long as they are suitably monotonic.) -/ -@[inline] def erase (t : RBSet α cmp) (cut : α → Ordering) : RBSet α cmp := +@[inline] def eraseP (t : RBSet α cmp) (cut : α → Ordering) : RBSet α cmp := ⟨t.1.erase cut, t.2.erase⟩ +/-- +`O(log n)`. Remove an element from the tree using a cut function. +The `cut` function is used to locate an element in the tree: +it returns `.gt` if we go too high and `.lt` if we go too low; +if it returns `.eq` we will remove the element. +(The function `cmp k` for some key `k` is a valid cut function, but we can also use cuts that +are not of this form as long as they are suitably monotonic.) +-/ +@[inline] def erase (t : RBSet α cmp) (x : α) : RBSet α cmp := t.eraseP (cmp x) + /-- `O(log n)`. Find an element in the tree using a cut function. -/ @[inline] def findP? (t : RBSet α cmp) (cut : α → Ordering) : Option α := t.1.find? cut @@ -705,7 +715,7 @@ if it exists. If multiple keys in the map return `eq` under `cut`, any of them m @[inline] def upperBoundP? (t : RBSet α cmp) (cut : α → Ordering) : Option α := t.1.upperBound? cut /-- -`O(log n)`. `upperBound? k` retrieves the largest entry smaller than or equal to `k`, +`O(log n)`. `upperBound? k` retrieves the smallest entry larger than or equal to `k`, if it exists. -/ @[inline] def upperBound? (t : RBSet α cmp) (k : α) : Option α := t.upperBoundP? (cmp k) @@ -1049,7 +1059,7 @@ instance [Repr α] [Repr β] : Repr (RBMap α β cmp) where @[inline] def insert (t : RBMap α β cmp) (k : α) (v : β) : RBMap α β cmp := RBSet.insert t (k, v) /-- `O(log n)`. Remove an element `k` from the map. -/ -@[inline] def erase (t : RBMap α β cmp) (k : α) : RBMap α β cmp := RBSet.erase t (cmp k ·.1) +@[inline] def erase (t : RBMap α β cmp) (k : α) : RBMap α β cmp := RBSet.eraseP t (cmp k ·.1) /-- `O(n log n)`. Build a tree from an unsorted list by inserting them one at a time. -/ @[inline] def ofList (l : List (α × β)) (cmp : α → α → Ordering) : RBMap α β cmp := @@ -1068,6 +1078,13 @@ instance [Repr α] [Repr β] : Repr (RBMap α β cmp) where /-- `O(log n)`. Find the value corresponding to key `k`, or return `v₀` if it is not in the map. -/ @[inline] def findD (t : RBMap α β cmp) (k : α) (v₀ : β) : β := (t.find? k).getD v₀ +/-- +`O(log n)`. `upperBound? k` retrieves the key-value pair of the smallest key +larger than or equal to `k`, if it exists. +-/ +@[inline] def upperBound? (t : RBMap α β cmp) (k : α) : Option (α × β) := + RBSet.upperBoundP? t (cmp k ·.1) + /-- `O(log n)`. `lowerBound? k` retrieves the key-value pair of the largest key smaller than or equal to `k`, if it exists. diff --git a/Std/Data/RBMap/Lemmas.lean b/Std/Data/RBMap/Lemmas.lean index 0b2fc73724..151a294de0 100644 --- a/Std/Data/RBMap/Lemmas.lean +++ b/Std/Data/RBMap/Lemmas.lean @@ -6,7 +6,6 @@ Authors: Mario Carneiro import Std.Data.RBMap.Alter import Std.Data.Nat.Lemmas import Std.Data.List.Lemmas -import Std.Tactic.Lint /-! # Additional lemmas for Red-black trees @@ -297,7 +296,7 @@ end Stream theorem toStream_toList' {t : RBNode α} {s} : (t.toStream s).toList = t.toList ++ s.toList := by induction t generalizing s <;> simp [*, toStream] -@[simp] theorem toStream_toList {t : RBNode α} : t.toStream.toList = t.toList := by +@[simp] theorem toStream_toList (t : RBNode α) : t.toStream.toList = t.toList := by simp [toStream_toList'] theorem Stream.next?_toList {s : RBNode.Stream α} : @@ -340,9 +339,15 @@ theorem Ordered.le_max? {t : RBNode α} [TransCmp cmp] (ht : t.Ordered cmp) (h : @[simp] theorem setBlack_toList {t : RBNode α} : t.setBlack.toList = t.toList := by cases t <;> simp [setBlack] +@[simp] theorem mem_setBlack {t : RBNode α} : v ∈ t.setBlack ↔ v ∈ t := by + rw [← mem_toList]; simp + @[simp] theorem setRed_toList {t : RBNode α} : t.setRed.toList = t.toList := by cases t <;> simp [setRed] +@[simp] theorem mem_setRed {t : RBNode α} : v ∈ t.setRed ↔ v ∈ t := by + rw [← mem_toList]; simp + @[simp] theorem balance1_toList {l : RBNode α} {v r} : (l.balance1 v r).toList = l.toList ++ v :: r.toList := by unfold balance1; split <;> simp @@ -359,6 +364,17 @@ theorem Ordered.le_max? {t : RBNode α} [TransCmp cmp] (ht : t.Ordered cmp) (h : (l.balRight v r).toList = l.toList ++ v :: r.toList := by unfold balRight; split <;> (try simp); split <;> simp +@[simp] theorem append_toList (l r : RBNode α) : (l.append r).toList = l.toList ++ r.toList := by + unfold append <;> split <;> simp + iterate 2 + · next a x b c y d => + split + · rw [← List.append_assoc, ← append_toList]; simp [*] + · simp [append_toList b c] + iterate 2 + · rw [append_toList]; simp +termination_by l.size + r.size + theorem size_eq {t : RBNode α} : t.size = t.toList.length := by induction t <;> simp [*, size]; rfl @@ -647,6 +663,24 @@ theorem Ordered.lt_upperBound? [@TransCmp α cmp] [IsStrictCut cmp cut] (ht : Or end «upperBound? and lowerBound?» +/-- The `balLeft` function does nothing if the first argument is black. -/ +theorem balLeft_black {l : RBNode α} {v : α} {r : RBNode α} + (hl : l.isBlack = black) : balLeft l.setRed v r = node .red l v r := by + cases l <;> cases hl; simp [balLeft, setRed] + +/-- The `balRight` function does nothing if the second argument is black. -/ +theorem balRight_black {l : RBNode α} {v : α} {r : RBNode α} + (hr : r.isBlack = black) : balRight l v r.setRed = node .red l v r := by + cases r <;> cases hr; simp [balRight, setRed] + +@[simp] theorem setBlack_setRed (t : RBNode α) : t.setRed.setBlack = t.setBlack := by + cases t <;> simp [setRed, setBlack] + +theorem Balanced.isRed (ht : Balanced t c n) : t.isRed = c := by cases ht <;> rfl + +theorem setRed_of_isBlack {t : RBNode α} (h : isBlack t = red) : t.setRed = t := by + cases t <;> cases h <;> rfl + namespace Path attribute [simp] RootOrdered Ordered @@ -703,17 +737,41 @@ theorem _root_.Std.RBNode.zoom_toList {t : RBNode α} (eq : t.zoom cut = (t', p' p'.withList t'.toList = t.toList := by rw [← fill_toList, ← zoom_fill eq]; rfl @[simp] theorem ins_toList {p : Path α} : (p.ins t).toList = p.withList t.toList := by - match p with - | .root | .left red .. | .right red .. | .left black .. | .right black .. => - simp [ins, ins_toList] + unfold ins <;> split <;> (try rw [ins_toList]) <;> simp @[simp] theorem insertNew_toList {p : Path α} : (p.insertNew v).toList = p.withList [v] := by simp [insertNew] -theorem insert_toList {p : Path α} : +@[simp] theorem insert_toList {p : Path α} : (p.insert t v).toList = p.withList (t.setRoot v).toList := by simp [insert]; split <;> simp [setRoot] +@[simp] theorem del_toList {p : Path α} : (p.del t c).toList = p.withList t.toList := by + unfold del <;> split <;> (try rw [del_toList]) <;> simp + +@[simp] theorem erase_toList {p : Path α} : (p.erase t).toList = p.withList t.delRoot.toList := by + unfold erase <;> split <;> simp [delRoot] + +@[simp] theorem setBlack_del {p : Path α} : (p.del t c).setBlack = p.del t c := by + unfold del <;> split <;> first | apply setBlack_del | apply setBlack_idem + +theorem del_eq_fill (path : Path α) (t : RBNode α) : + path.del t.setRed t.isBlack = (path.fill t).setBlack := by + induction path generalizing t with + | root => simp [del] + | left _ _ _ _ ih => + rw [fill, ← ih] + cases e : isBlack t <;> rw [del] <;> [rw [setRed_of_isBlack e]; rw [balLeft_black e]] <;> rfl + | right _ _ _ _ ih => + rw [fill, ← ih] + cases e : isBlack t <;> rw [del] <;> [rw [setRed_of_isBlack e]; rw [balRight_black e]] <;> rfl + +theorem zoom_erase {t : RBNode α} (H : t.zoom cut = (t', path)) : + (path.erase t').setBlack = t.erase cut := by + have := zoom_del H; rw [del] at this; simp [RBNode.erase, this] + cases t' <;> simp [erase, delRoot, isBlack] + exact (del_eq_fill ..).symm + end Path theorem insert_toList_zoom {t : RBNode α} (ht : Balanced t c n) @@ -791,6 +849,70 @@ theorem mem_insert [@TransCmp α cmp] {t : RBNode α} (ht : Balanced t c n) (ht · exact (mem_insert_of_mem ht h₁).resolve_right fun h' => h₂ <| ht₂.find?_some.2 ⟨h₁, h'⟩ · exact h ▸ mem_insert_self ht +theorem all_eq_all_toList (t : RBNode α) (p) : t.all p = t.toList.all p := + Bool.eq_iff_iff.2 <| by simp [all_iff, All_def, mem_toList] + +theorem any_eq_any_toList (t : RBNode α) (p) : t.any p = t.toList.any p := + Bool.eq_iff_iff.2 <| by simp [RBNode.any_iff, RBNode.Any_def, mem_toList] + +theorem all₂_eq_all₂_toList (t₁ : RBNode α) (t₂ : RBNode β) (R) : + t₁.all₂ R t₂ = t₁.toList.all₂ R t₂.toList := by + let F a (s : RBNode.Stream β) : Option (PUnit.{u_2+1} × RBNode.Stream β) := do + let (b, s) ← s.next? + bif R a b then pure (⟨⟩, s) else none + show (StateT.run (forM F t₁) (toStream t₂) matches some (_, Stream.nil)) = _ + rw [← toStream_toList t₂, forM_eq_forM_toList] + generalize toStream t₂ = s + induction toList t₁ generalizing s with + | nil => cases s <;> simp [List.all₂] + | cons a l ih => + simp; generalize e : StateT.run (F a) s = o + simp [F, StateT.run] at e + have := s.next?_toList + generalize s.next? = s', s.toList = l' at e this + obtain _|s' := s' <;> simp at this <;> + cases l' <;> cases this <;> simp at e <;> subst o + · rfl + · simp [List.all₂]; cases R a s'.1 <;> simp [ih] + +theorem beq_eq_beq_toList [BEq α] (t₁ t₂ : RBNode α) : (t₁ == t₂) = (t₁.toList == t₂.toList) := by + rw [List.beq_eq_all₂]; simp [BEq.beq, all₂_eq_all₂_toList] + +theorem erase_eq_self_of_zoom_nil {t : RBNode α} + (e : zoom cut t = (nil, p)) : t.erase cut = t.setBlack := by + simp [← Path.zoom_erase e, Path.erase]; rw [← Path.zoom_fill e]; rfl + +theorem Ordered.erase_toList_of_not_memP [@TransCmp α cmp] [IsCut cmp cut] (ht : Ordered cmp t) + (h : ¬MemP cut t) : (t.erase cut).toList = t.toList := by + match e : zoom cut t, find?_eq_zoom ▸ mt ht.memP_iff_find?.2 h with + | (.node .., _), this => cases this ⟨_, rfl⟩ + | (.nil, _), _ => simp [erase_eq_self_of_zoom_nil e] + +theorem exists_erase_toList_zoom_node {t : RBNode α} + (e : zoom cut t = (node c' l v r, p)) : + ∃ L R, t.toList = L ++ v :: R ∧ (t.erase cut).toList = L ++ R := by + refine ⟨p.listL ++ l.toList, r.toList ++ p.listR, ?_⟩ + simp [← zoom_toList e, ← Path.zoom_erase e, Path.erase] + +theorem Ordered.mem_erase [@TransCmp α cmp] [IsStrictCut cmp cut] (ht : Ordered cmp t) : + v ∈ t.erase cut ↔ v ∈ t ∧ cut v ≠ .eq := by + match e : zoom cut t with + | (nil, p) => + simp [erase_eq_self_of_zoom_nil e] + intro vt eq + cases (ht.find?_some.2 ⟨vt, eq⟩).symm.trans (e ▸ find?_eq_zoom :) + | (node _ _ u _, p) => + let ⟨L₁, L₂, h1, h2⟩ := exists_erase_toList_zoom_node e + rw [← mem_toList, ← mem_toList, h1, h2]; simp only [List.mem_append, List.mem_cons] + have := ht.find?_some.1 (e ▸ find?_eq_zoom :) + refine ((and_congr_left fun h => ?_).trans (and_iff_left_of_imp fun hv eq => ?_)).symm + · exact or_congr_right <| or_iff_right fun eq => h (eq ▸ this.2) + · have uv := (IsStrictCut.exact (cmp := cmp) this.2).trans eq + have := h1 ▸ ht.toList_sorted; simp [List.pairwise_append] at this + obtain hv | hv := hv + · simp [OrientedCmp.cmp_eq_gt.2 (this.2.2 _ hv).1.1] at uv + · simp [(this.2.1.1 _ hv).1] at uv + end RBNode open RBNode (IsCut IsStrictCut) @@ -802,8 +924,11 @@ namespace RBSet @[simp] theorem mkRBSet_eq : mkRBSet α cmp = ∅ := rfl @[simp] theorem empty_eq : @RBSet.empty α cmp = ∅ := rfl @[simp] theorem default_eq : (default : RBSet α cmp) = ∅ := rfl -@[simp] theorem empty_toList : toList (∅ : RBSet α cmp) = [] := rfl -@[simp] theorem single_toList : toList (single a : RBSet α cmp) = [a] := rfl +@[simp] theorem toList_empty : toList (∅ : RBSet α cmp) = [] := rfl +@[simp] theorem toList_single : toList (single a : RBSet α cmp) = [a] := rfl + +@[deprecated] alias empty_toList := toList_empty +@[deprecated] alias single_toList := toList_single theorem mem_toList {t : RBSet α cmp} : x ∈ toList t ↔ x ∈ t.1 := RBNode.mem_toList @@ -816,6 +941,8 @@ theorem mem_iff_mem_toList {t : RBSet α cmp} : x ∈ t ↔ ∃ y ∈ toList t, theorem mem_of_mem_toList [@OrientedCmp α cmp] {t : RBSet α cmp} (h : x ∈ toList t) : x ∈ t := mem_iff_mem_toList.2 ⟨_, h, OrientedCmp.cmp_refl⟩ +@[simp] theorem not_mem_empty (x : α) : ¬x ∈ (∅ : RBSet α cmp) := by simp [mem_iff_mem_toList] + theorem foldl_eq_foldl_toList {t : RBSet α cmp} : t.foldl f init = t.toList.foldl f init := RBNode.foldl_eq_foldl_toList @@ -842,6 +969,10 @@ theorem isEmpty_iff_toList_eq_nil {t : RBSet α cmp} : theorem toList_sorted {t : RBSet α cmp} : t.toList.Pairwise (RBNode.cmpLT cmp) := t.2.out.1.toList_sorted +@[simp] theorem findP?_empty : (∅ : RBSet α cmp).findP? cut = none := rfl + +@[simp] theorem find?_empty : (∅ : RBSet α cmp).find? v = none := rfl + theorem findP?_some_eq_eq {t : RBSet α cmp} : t.findP? cut = some y → cut y = .eq := RBNode.find?_some_eq_eq @@ -877,6 +1008,9 @@ theorem memP_iff_findP? [@TransCmp α cmp] [IsCut cmp cut] {t : RBSet α cmp} : theorem mem_iff_find? [@TransCmp α cmp] {t : RBSet α cmp} : x ∈ t ↔ ∃ y, t.find? x = some y := memP_iff_findP? +@[simp] theorem containsP_iff [@TransCmp α cmp] [IsCut cmp cut] {t : RBSet α cmp} : + t.containsP cut ↔ MemP cut t := Option.isSome_iff_exists.trans memP_iff_findP?.symm + @[simp] theorem contains_iff [@TransCmp α cmp] {t : RBSet α cmp} : t.contains x ↔ x ∈ t := Option.isSome_iff_exists.trans mem_iff_find?.symm @@ -1001,16 +1135,24 @@ theorem upperBound?_mem [@OrientedCmp α cmp] {t : RBSet α cmp} theorem lowerBound?_mem [@OrientedCmp α cmp] {t : RBSet α cmp} (h : t.lowerBound? x = some y) : y ∈ t := lowerBoundP?_mem h +theorem upperBoundP?_exists_mem_toList {t : RBSet α cmp} [TransCmp cmp] [IsCut cmp cut] : + (∃ x, t.upperBoundP? cut = some x) ↔ ∃ x ∈ toList t, cut x ≠ .gt := by + simp [upperBoundP?, t.2.out.1.upperBound?_exists, mem_toList] + +theorem lowerBoundP?_exists_mem_toList {t : RBSet α cmp} [TransCmp cmp] [IsCut cmp cut] : + (∃ x, t.lowerBoundP? cut = some x) ↔ ∃ x ∈ toList t, cut x ≠ .lt := by + simp [lowerBoundP?, t.2.out.1.lowerBound?_exists, mem_toList] + theorem upperBoundP?_exists {t : RBSet α cmp} [TransCmp cmp] [IsCut cmp cut] : (∃ x, t.upperBoundP? cut = some x) ↔ ∃ x ∈ t, cut x ≠ .gt := by - simp [upperBoundP?, t.2.out.1.upperBound?_exists, mem_toList, mem_iff_mem_toList] + simp [upperBoundP?_exists_mem_toList, mem_iff_mem_toList] exact ⟨ fun ⟨x, h1, h2⟩ => ⟨x, ⟨x, h1, OrientedCmp.cmp_refl⟩, h2⟩, fun ⟨x, ⟨y, h1, h2⟩, eq⟩ => ⟨y, h1, IsCut.congr (cut := cut) h2 ▸ eq⟩⟩ theorem lowerBoundP?_exists {t : RBSet α cmp} [TransCmp cmp] [IsCut cmp cut] : (∃ x, t.lowerBoundP? cut = some x) ↔ ∃ x ∈ t, cut x ≠ .lt := by - simp [lowerBoundP?, t.2.out.1.lowerBound?_exists, mem_toList, mem_iff_mem_toList] + simp [lowerBoundP?_exists_mem_toList, mem_iff_mem_toList] exact ⟨ fun ⟨x, h1, h2⟩ => ⟨x, ⟨x, h1, OrientedCmp.cmp_refl⟩, h2⟩, fun ⟨x, ⟨y, h1, h2⟩, eq⟩ => ⟨y, h1, IsCut.congr (cut := cut) h2 ▸ eq⟩⟩ @@ -1079,6 +1221,58 @@ theorem lowerBound?_lt {t : RBSet α cmp} [TransCmp cmp] (H : t.lowerBound? x = some y) (hz : z ∈ t) : cmp y z = .lt ↔ cmp x z = .lt := lowerBoundP?_lt H hz +@[simp] theorem ofList_nil : ofList [] cmp = ∅ := rfl + +theorem mem_ofList [@TransCmp α cmp] {l x} : x ∈ ofList l cmp ↔ ∃ y ∈ l, cmp x y = .eq := by + suffices ∀ t : RBSet α cmp, x ∈ List.foldl insert t l ↔ x ∈ t ∨ ∃ y, y ∈ l ∧ cmp x y = .eq by + simp [ofList, this] + conv in _ = _ => rw [OrientedCmp.cmp_eq_eq_symm] + induction l <;> simp [*, mem_insert, or_assoc] + +theorem ofArray_eq_ofList : ofArray arr cmp = ofList arr.data cmp := by + simp [ofArray, Array.foldl_eq_foldl_data, ofList] + +theorem mem_ofArray [@TransCmp α cmp] {arr x} : x ∈ ofArray arr cmp ↔ ∃ y ∈ arr, cmp x y = .eq := by + simp [ofArray_eq_ofList, mem_ofList, Array.mem_def] + +theorem all_eq_all_toList (t : RBSet α cmp) (p) : t.all p = t.toList.all p := by + simp [all, RBNode.all_eq_all_toList] + +theorem any_eq_any_toList (t : RBSet α cmp) (p) : t.any p = t.toList.any p := by + simp [any, RBNode.any_eq_any_toList] + +theorem all₂_eq_all₂_toList (t₁ : RBSet α cmpα) (t₂ : RBSet β cmpβ) (p) : + t₁.all₂ p t₂ = t₁.toList.all₂ p t₂.toList := by simp [all₂, RBNode.all₂_eq_all₂_toList] + +theorem mem_toList_eraseP [@TransCmp α cmp] [IsStrictCut cmp cut] {t : RBSet α cmp} : + v ∈ toList (t.eraseP cut) ↔ v ∈ toList t ∧ cut v ≠ .eq := by + simpa [mem_toList] using t.2.out.1.mem_erase + +theorem mem_eraseP [@TransCmp α cmp] [IsStrictCut cmp cut] {t : RBSet α cmp} : + v ∈ t.eraseP cut ↔ v ∈ t ∧ cut v ≠ .eq := by + rw [mem_iff_mem_toList, mem_iff_mem_toList, ← exists_and_right] + refine exists_congr fun x => (and_congr_left fun h => ?_).trans and_right_comm + rw [mem_toList_eraseP, IsCut.congr (cut := cut) h] + +theorem mem_toList_erase [@TransCmp α cmp] {t : RBSet α cmp} : + v ∈ toList (t.erase x) ↔ v ∈ toList t ∧ cmp x v ≠ .eq := mem_toList_eraseP + +theorem mem_erase [@TransCmp α cmp] {t : RBSet α cmp} : + v ∈ t.erase x ↔ v ∈ t ∧ cmp x v ≠ .eq := mem_eraseP + +theorem eraseP_toList_of_not_memP [@TransCmp α cmp] [IsCut cmp cut] + {t : RBSet α cmp} (h : ¬MemP cut t) : (t.eraseP cut).toList = t.toList := + t.2.out.1.erase_toList_of_not_memP h + +theorem find?_eraseP [@TransCmp α cmp] [IsStrictCut cmp cut] {t : RBSet α cmp} : + (t.eraseP cut).find? v = if cut v = .eq then none else t.find? v := by + refine Option.ext fun x => ?_; split <;> rename_i h <;> simp [find?_some, mem_toList_eraseP] + · exact fun _ H vx => H <| (IsCut.congr vx).symm.trans h + · exact fun vx _ => IsCut.congr (cut := cut) vx ▸ h + +theorem find?_erase [@TransCmp α cmp] {t : RBSet α cmp} : + (t.erase x).find? v = if cmp x v = .eq then none else t.find? v := find?_eraseP + end RBSet namespace RBMap @@ -1121,6 +1315,10 @@ theorem toStream_eq {t : RBMap α β cmp} : toStream t = t.1.toStream .nil := rf theorem toList_sorted {t : RBMap α β cmp} : t.toList.Pairwise (RBNode.cmpLT (cmp ·.1 ·.1)) := RBSet.toList_sorted +@[simp] theorem findEntry?_empty : (∅ : RBMap α β cmp).findEntry? x = none := rfl + +@[simp] theorem find?_empty : (∅ : RBMap α β cmp).find? v = none := rfl + theorem findEntry?_some_eq_eq {t : RBMap α β cmp} : t.findEntry? x = some (y, v) → cmp x y = .eq := RBSet.findP?_some_eq_eq @@ -1202,4 +1400,72 @@ theorem find?_insert [@TransCmp α cmp] (t : RBMap α β cmp) (k v k') : (t.insert k v).find? k' = if cmp k' k = .eq then some v else t.find? k' := by split <;> [exact find?_insert_of_eq t ‹_›; exact find?_insert_of_ne t ‹_›] +theorem upperBound?_eq_findEntry? {t : RBMap α β cmp} (H : t.findEntry? x = some y) : + t.upperBound? x = some y := RBSet.upperBoundP?_eq_findP? H + +theorem lowerBound?_eq_findEntry? {t : RBMap α β cmp} (H : t.findEntry? x = some y) : + t.lowerBound? x = some y := RBSet.lowerBoundP?_eq_findP? H + +/-- The value `y` returned by `upperBound? x` is greater or equal to `x`. -/ +theorem upperBound?_ge {t : RBMap α β cmp} : t.upperBound? x = some y → cmp x y.1 ≠ .gt := + RBSet.upperBoundP?_ge + +/-- The value `y` returned by `lowerBound? x` is less or equal to `x`. -/ +theorem lowerBound?_le {t : RBMap α β cmp} : t.lowerBound? x = some y → cmp x y.1 ≠ .lt := + RBSet.lowerBoundP?_le + +theorem upperBound?_mem_toList {t : RBMap α β cmp} (h : t.upperBound? x = some y) : + y ∈ t.toList := RBSet.upperBoundP?_mem_toList h + +theorem lowerBound?_mem_toList {t : RBMap α β cmp} (h : t.lowerBound? x = some y) : + y ∈ t.toList := RBSet.lowerBoundP?_mem_toList h + +theorem upperBound?_exists {t : RBMap α β cmp} [TransCmp cmp] : + (∃ y, t.upperBound? x = some y) ↔ ∃ y ∈ toList t, cmp x y.1 ≠ .gt := + RBSet.upperBoundP?_exists_mem_toList + +theorem lowerBound?_exists {t : RBMap α β cmp} [TransCmp cmp] : + (∃ y, t.lowerBound? x = some y) ↔ ∃ y ∈ toList t, cmp x y.1 ≠ .lt := + RBSet.lowerBoundP?_exists_mem_toList + +theorem lt_upperBound? {t : RBMap α β cmp} [TransCmp cmp] + (H : t.upperBound? x = some y) (hz : z ∈ toList t) : cmp z.1 y.1 = .lt ↔ cmp z.1 x = .lt := + (RBSet.lt_upperBoundP? H (RBSet.mem_of_mem_toList hz)).trans OrientedCmp.cmp_eq_gt + +theorem lowerBound?_lt {t : RBMap α β cmp} [TransCmp cmp] + (H : t.lowerBound? x = some y) (hz : z ∈ toList t) : cmp y.1 z.1 = .lt ↔ cmp x z.1 = .lt := + (RBSet.lowerBoundP?_lt H (RBSet.mem_of_mem_toList hz) :) + +@[simp] theorem ofList_nil : @ofList α β [] cmp = ∅ := rfl + +theorem ofArray_eq_ofList : ofArray arr cmp = ofList arr.data cmp := RBSet.ofArray_eq_ofList + +theorem all_eq_all_toList (t : RBMap α β cmp) (p) : t.all p = t.toList.all fun x => p x.1 x.2 := + RBSet.all_eq_all_toList .. + +theorem any_eq_any_toList (t : RBMap α β cmp) (p) : t.any p = t.toList.any fun x => p x.1 x.2 := + RBSet.any_eq_any_toList .. + +theorem all₂_eq_all₂_toList (t₁ : RBMap α₁ β₁ cmp₁) (t₂ : RBMap α₂ β₂ cmp₂) (p) : + t₁.all₂ p t₂ = t₁.toList.all₂ p t₂.toList := RBSet.all₂_eq_all₂_toList .. + +theorem mem_toList_erase [@TransCmp α cmp] {t : RBMap α β cmp} : + v ∈ toList (t.erase x) ↔ v ∈ toList t ∧ cmp x v.1 ≠ .eq := RBSet.mem_toList_eraseP + +theorem erase_toList_of_find_eq_none [@TransCmp α cmp] + {t : RBMap α β cmp} (h : t.find? x = none) : (t.erase x).toList = t.toList := + t.eraseP_toList_of_not_memP fun h' => + Option.ne_none_iff_exists'.2 (RBSet.memP_iff_findP?.1 h') (Option.map_eq_none'.1 h) + +theorem findEntry?_erase [@TransCmp α cmp] {t : RBMap α β cmp} : + (t.erase x).findEntry? v = if cmp x v = .eq then none else t.findEntry? v := by + refine Option.ext fun y => ?_ + split <;> rename_i h <;> simp [findEntry?, erase, RBSet.mem_toList_eraseP, RBSet.findP?_some] + · exact fun _ H vx => H <| (IsCut.congr vx).symm.trans h + · exact fun vx _ => TransCmp.cmp_congr_right vx ▸ h + +theorem find?_erase [@TransCmp α cmp] {t : RBMap α β cmp} : + (t.erase x).find? v = if cmp x v = .eq then none else t.find? v := by + simp [find?, findEntry?_erase]; split <;> simp + end RBMap