From 66a3bd2d823920fcc33f32dbf317f9a8339f49e0 Mon Sep 17 00:00:00 2001 From: Kim Morrison Date: Wed, 13 Nov 2024 10:14:26 +1100 Subject: [PATCH] feat: List.SatisfiesM_foldlM (#1034) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Co-authored-by: François G. Dorais Co-authored-by: Eric Wieser --- Batteries/Data/List.lean | 1 + Batteries/Data/List/Monadic.lean | 41 ++++++++++++++++++++++++++++++++ 2 files changed, 42 insertions(+) create mode 100644 Batteries/Data/List/Monadic.lean diff --git a/Batteries/Data/List.lean b/Batteries/Data/List.lean index f93f90a6c2..3429039dc9 100644 --- a/Batteries/Data/List.lean +++ b/Batteries/Data/List.lean @@ -3,6 +3,7 @@ import Batteries.Data.List.Count import Batteries.Data.List.EraseIdx import Batteries.Data.List.Init.Lemmas import Batteries.Data.List.Lemmas +import Batteries.Data.List.Monadic import Batteries.Data.List.OfFn import Batteries.Data.List.Pairwise import Batteries.Data.List.Perm diff --git a/Batteries/Data/List/Monadic.lean b/Batteries/Data/List/Monadic.lean new file mode 100644 index 0000000000..00eb213755 --- /dev/null +++ b/Batteries/Data/List/Monadic.lean @@ -0,0 +1,41 @@ +/- +Copyright (c) 2024 Lean FRO, LLC. All rights reserved. +Released under Apache 2.0 license as described in the file LICENSE. +Authors: Kim Morrison +-/ +import Batteries.Classes.SatisfiesM + +/-! +# Results about monadic operations on `List`, in terms of `SatisfiesM`. + +-/ + +namespace List + +theorem satisfiesM_foldlM [Monad m] [LawfulMonad m] {f : β → α → m β} (h₀ : motive b) + (h₁ : ∀ (b) (_ : motive b) (a : α) (_ : a ∈ l), SatisfiesM motive (f b a)) : + SatisfiesM motive (List.foldlM f b l) := by + have g b hb a am := Classical.indefiniteDescription _ (h₁ b hb a am) + clear h₁ + induction l generalizing b with + | nil => exact SatisfiesM.pure h₀ + | cons hd tl ih => + simp only [foldlM_cons] + apply SatisfiesM.bind_pre + let ⟨q, qh⟩ := g b h₀ hd (mem_cons_self hd tl) + exact ⟨(fun ⟨b, bh⟩ => ⟨b, ih bh (fun b bh a am => g b bh a (mem_cons_of_mem hd am))⟩) <$> q, + by simpa using qh⟩ + +theorem satisfiesM_foldrM [Monad m] [LawfulMonad m] {f : α → β → m β} (h₀ : motive b) + (h₁ : ∀ (a : α) (_ : a ∈ l) (b) (_ : motive b), SatisfiesM motive (f a b)) : + SatisfiesM motive (List.foldrM f b l) := by + induction l with + | nil => exact SatisfiesM.pure h₀ + | cons hd tl ih => + simp only [foldrM_cons] + apply SatisfiesM.bind_pre + let ⟨q, qh⟩ := ih (fun a am b hb => h₁ a (mem_cons_of_mem hd am) b hb) + exact ⟨(fun ⟨b, bh⟩ => ⟨b, h₁ hd (mem_cons_self hd tl) b bh⟩) <$> q, + by simpa using qh⟩ + +end List