-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_emotion_classifier.py
64 lines (54 loc) · 2.26 KB
/
train_emotion_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
"""
Description: Train emotion classification model
"""
from keras.callbacks import CSVLogger, ModelCheckpoint, EarlyStopping
from keras.callbacks import ReduceLROnPlateau
from keras.preprocessing.image import ImageDataGenerator
from load_and_process import load_fer2013
from load_and_process import preprocess_input
from models.cnn import mini_XCEPTION
from sklearn.model_selection import train_test_split
# parameters
batch_size = 32
num_epochs = 10000
input_shape = (48, 48, 1)
validation_split = .2
verbose = 1
num_classes = 7
patience = 50
base_path = 'models/'
# data generator
data_generator = ImageDataGenerator(
featurewise_center=False,
featurewise_std_normalization=False,
rotation_range=10,
width_shift_range=0.1,
height_shift_range=0.1,
zoom_range=.1,
horizontal_flip=True)
# model parameters/compilation
model = mini_XCEPTION(input_shape, num_classes)
model.compile(optimizer='adam', loss='categorical_crossentropy',
metrics=['accuracy'])
model.summary()
# callbacks
log_file_path = base_path + '_emotion_training.log'
csv_logger = CSVLogger(log_file_path, append=False)
early_stop = EarlyStopping('val_loss', patience=patience)
reduce_lr = ReduceLROnPlateau('val_loss', factor=0.1,
patience=int(patience/4), verbose=1)
trained_models_path = base_path + '_mini_XCEPTION'
model_names = trained_models_path + '.{epoch:02d}-{val_acc:.2f}.hdf5'
model_checkpoint = ModelCheckpoint(model_names, 'val_loss', verbose=1,
save_best_only=True)
callbacks = [model_checkpoint, csv_logger, early_stop, reduce_lr]
# loading dataset
faces, emotions = load_fer2013()
faces = preprocess_input(faces)
num_samples, num_classes = emotions.shape
xtrain, xtest,ytrain,ytest = train_test_split(faces, emotions,test_size=0.2,shuffle=True)
model.fit_generator(data_generator.flow(xtrain, ytrain,
batch_size),
steps_per_epoch=len(xtrain) / batch_size,
epochs=num_epochs, verbose=1, callbacks=callbacks,
validation_data=(xtest,ytest))