-
Notifications
You must be signed in to change notification settings - Fork 0
/
double_stub.py
260 lines (233 loc) · 8.99 KB
/
double_stub.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
"""
* Software License Agreement (BSD License)
*
* Copyright (c) 2020, Chengfeng Luo.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the Kentaro Wada nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
"""
# double_stub.py
# For calculating double stub tuning
# Also will plot smith chart
#
import numpy as np
from numpy import cos, sin, tan, sqrt, pi, arctan
from cmath import phase
from matplotlib import pyplot as plt
import sys
# Input parameters here
z0 = 50
zl = 60 - 80j
d = 1/8 # unit: lambda=1
y0 = 1/z0
yl = 1/zl
def draw_arc(c_x, c_y, r, start_phase, end_phase, direction='clockwise'):
# input phase range: -pi:pi
if direction == 'clockwise':
if end_phase > start_phase:
end_phase -= 2*np.pi
theta = np.linspace(start_phase, end_phase, 1000)
else:
if start_phase > end_phase:
start_phase -= 2*np.pi
theta = np.linspace(start_phase, end_phase, 1000)
x = r*cos(theta)+c_x
y = r*sin(theta)+c_y
return x, y
def draw_arc_shortest(c_x, c_y, r, start_phase, end_phase):
# input phase range: -pi:pi
diff = abs(start_phase-end_phase)
if diff < pi:
theta = np.linspace(start_phase, end_phase, 1000)
else:
if start_phase < end_phase:
start_phase += 2*np.pi
else:
end_phase += 2*np.pi
theta = np.linspace(start_phase, end_phase, 1000)
x = r*cos(theta)+c_x
y = r*sin(theta)+c_y
return x, y
def draw_circle(c_x, c_y, r):
# input:
# c_x: center's x
# c_y: center's y
# r : radious
# output: x,y array for plotting
theta = np.linspace(0, 2*np.pi, 1000)
x = r*cos(theta)+c_x
y = r*sin(theta)+c_y
return x, y
def z2gamma(z):
global z0
return (z-z0)/(z+z0)
def y2gammaZ(y):
global z0
y0 = 1/z0
return (y-y0)/(y+y0)
# follow textbook p.245
rl = zl.real
xl = zl.imag
gl = yl.real
bl = yl.imag
t = tan(2*pi*d)
# check if feasible
if gl > y0*(1+t**2)/(t**2):
print("No solution!")
sys.exit(1)
# solution 1: y11, y21
# solution 2: y12, y22
b11 = (y0+sqrt((1+t**2)*gl*y0-gl**2*(t**2)))/t - bl
b12 = (y0-sqrt((1+t**2)*gl*y0-gl**2*(t**2)))/t - bl
b21 = (+y0*sqrt(y0*gl*(1+t**2)-gl**2*(t**2))+gl*y0)/gl/t
b22 = (-y0*sqrt(y0*gl*(1+t**2)-gl**2*(t**2))+gl*y0)/gl/t
y11 = gl + (bl+b11)*1j
y12 = gl + (bl+b12)*1j
y21 = y0*(gl+1j*(bl+b11+y0*t))/(y0+1j*t*(gl+1j*(bl+b11)))
y22 = y0*(gl+1j*(bl+b12+y0*t))/(y0+1j*t*(gl+1j*(bl+b12)))
l11open = (arctan(b11/y0)/2/pi)
if l11open<0: l11open += 1/2
l11short = (-arctan(y0/b11)/2/pi)
if l11short<0: l11short += 1/2
l21open = (arctan(b21/y0)/2/pi)
if l21open<0: l21open += 1/2
l21short = (-arctan(y0/b21)/2/pi)
if l21short<0: l21short += 1/2
l12open = (arctan(b12/y0)/2/pi)
if l12open<0: l12open += 1/2
l12short = (-arctan(y0/b12)/2/pi)
if l12short<0: l12short += 1/2
l22open = (arctan(b22/y0)/2/pi)
if l22open<0: l22open += 1/2
l22short = (-arctan(y0/b22)/2/pi)
if l22short<0: l22short += 1/2
zl_plt = z2gamma(zl)
yl_plt = y2gammaZ(yl)
y11_plt = y2gammaZ(y11)
y12_plt = y2gammaZ(y12)
y21_plt = y2gammaZ(y21)
y22_plt = y2gammaZ(y22)
# draw unit gamma circle, G=1 circle and axis
fig, ax=plt.subplots(1)
ax.plot([-1.1, 1.1], [0, 0], 'grey')
ax.plot([0, 0], [-1.1, 1.1], 'grey')
x, y=draw_circle(0, 0, 1)
ax.plot(x, y, 'black')
g1_x, g1_y=draw_circle(0.5, 0, 0.5)
ax.plot(g1_x, g1_y, color = 'lightpink')
ax.text(0.5-sqrt(2)/4, -sqrt(2)/4, '$G=1$',
horizontalalignment='right',
verticalalignment='top')
g1_x, g1_y=draw_circle(0.5*cos(4*pi*d), 0.5*sin(4*pi*d), 0.5)
ax.plot(g1_x, g1_y, color = 'lightpink')
ax.text(g1_x[len(g1_x)//2], g1_y[len(g1_x)//2], '$G=1$ at\nd=%.3f$\lambda$' % d,
horizontalalignment='right',
verticalalignment='top')
ax.set_aspect(1)
plt.xlim(-1.1, 1.1)
plt.ylim(-1.1, 1.1)
plt.xlabel(u'Re{$\Gamma$}')
plt.ylabel(u'Im{$\Gamma$}')
plt.title(u'Smith Z chat\n'
)
plt.grid(linestyle='--')
# draw constant g line for YL
gl_n = gl/y0
x,y = draw_arc_shortest(gl_n/(1+gl_n),0,1/(1+gl_n),
phase(yl_plt-gl_n/(1+gl_n)),
phase(y11_plt-gl_n/(1+gl_n)))
ax.plot(x, y, color = 'yellowgreen')
ax.text(x[len(x)//2], y[len(y)//2],u'$B_{11}$=%.3f'%(b11/y0))
x,y = draw_arc_shortest(gl_n/(1+gl_n),0,1/(1+gl_n),
phase(yl_plt-gl_n/(1+gl_n)),
phase(y12_plt-gl_n/(1+gl_n)))
ax.plot(x, y, color = 'lightblue')
ax.text(x[len(x)//2], y[len(y)//2],u'$B_{12}$=%.3f'%(b12/y0))
# draw constant SWR line
x,y = draw_arc(0,0,abs(y11_plt),phase(y11_plt),phase(y21_plt),'clockwise')
ax.plot(x, y, ':', color = 'limegreen')
x,y = draw_arc(0,0,abs(y12_plt),phase(y12_plt),phase(y22_plt),'clockwise')
ax.plot(x, y, ':', color = 'lightskyblue')
# draw constant g line for Y2
x,y = draw_arc_shortest(0.5,0,0.5,
phase(y21_plt-0.5),
phase(-0.5))
ax.plot(x, y, color = 'yellowgreen')
ax.text(x[len(x)//2], y[len(y)//2],u'$B_{21}$=%.3f'%(b21/y0),
horizontalalignment='right',
verticalalignment='top')
x,y = draw_arc_shortest(0.5,0,0.5,
phase(y22_plt-0.5),
phase(-0.5))
ax.plot(x, y, color = 'lightblue')
ax.text(x[len(x)//2], y[len(y)//2],u'$B_{22}$=%.3f'%(b22/y0),
horizontalalignment='right',
verticalalignment='top')
# draw ZL, YL, Y1 and Y2
# print normalized Z, Y for better display
plt.plot(zl_plt.real,zl_plt.imag,'o',color='orangered')
plt.text(zl_plt.real,zl_plt.imag,'$Z_L$')
plt.plot(yl_plt.real,yl_plt.imag,'o',color='cornflowerblue')
plt.text(yl_plt.real,yl_plt.imag,'$Y_L$=%.3f+j%.3f'%(yl.real/y0,yl.imag/y0))
plt.plot(y11_plt.real,y11_plt.imag,'o',color='olivedrab')
plt.text(y11_plt.real,y11_plt.imag,'$Y_{11}$=%.3f+j%.3f'%(y11.real/y0,y11.imag/y0))
plt.plot(y21_plt.real,y21_plt.imag,'o',color='olivedrab')
plt.text(y21_plt.real,y21_plt.imag,'$Y_{21}$=%.3f+j%.3f'%(y21.real/y0,y21.imag/y0))
plt.plot(y12_plt.real,y12_plt.imag,'o',color='steelblue')
plt.text(y12_plt.real,y12_plt.imag,'$Y_{12}$=%.3f+j%.3f'%(y12.real/y0,y12.imag/y0))
plt.plot(y22_plt.real,y22_plt.imag,'o',color='steelblue')
plt.text(y22_plt.real,y22_plt.imag,'$Y_{22}$=%.3f+j%.3f'%(y22.real/y0,y22.imag/y0))
plt.title(u'Smith Z chat\n'+
'For open circuit:'+
' $l_{11}$=%.3f$\lambda$ $l_{21}$=%.3f$\lambda$ or'%(l11open,l21open) +
' $l_{12}$=%.3f$\lambda$ $l_{22}$=%.3f$\lambda$\n'%(l12open,l22open) +
'For short circuit:'+
' $l_{11}$=%.3f$\lambda$ $l_{21}$=%.3f$\lambda$ or'%(l11short,l21short) +
' $l_{12}$=%.3f$\lambda$ $l_{22}$=%.3f$\lambda$'%(l12short,l22short) )
print('**************************************************')
print('Double Stub Turning Result')
print('**************************************************')
print('Input:')
print(' Z0 = %.5e'%z0)
print(' ZL = %s'%zl)
print(' d = %.5e lambda'%d)
print('Solution 1:')
print(' Y11 = %.5e+%.5ej, Y21 = %.5e+%.5ej'%(y11.real,y11.imag,y21.real,y21.imag))
print(' B11 = %.5e, B21 = %.5e'%(b11,b21))
print(' For open circuit:')
print(' l1 = %.5e, l2 = %.5e'%(l11open,l21open))
print(' For short circuit:')
print(' l1 = %.5e, l2 = %.5e'%(l11short,l21short))
print('Solution 2:')
print(' Y12 = %.5e+%.5ej, Y22 = %.5e+%.5ej'%(y12.real,y12.imag,y22.real,y22.imag))
print(' B12 = %.5e, B22 = %.5e'%(b12,b22))
print(' For open circuit:')
print(' l1 = %.5e, l2 = %.5e'%(l12open,l22open))
print(' For short circuit:')
print(' l1 = %.5e, l2 = %.5e'%(l12short,l22short))
plt.show()