-
Notifications
You must be signed in to change notification settings - Fork 100
/
Copy pathchatbot.py
151 lines (140 loc) · 7.63 KB
/
chatbot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
"""Most of the code comes from seq2seq tutorial. Binary for training conversation models and decoding from them.
Running this program without --decode will tokenize it in a very basic way,
and then start training a model saving checkpoints to --train_dir.
Running with --decode starts an interactive loop so you can see how
the current checkpoint performs
See the following papers for more information on neural translation models.
* http://arxiv.org/abs/1409.3215
* http://arxiv.org/abs/1409.0473
* http://arxiv.org/abs/1412.2007
"""
import math
import sys
import time
from data_utils import *
from seq2seq_model import *
from tqdm import tqdm
tf.app.flags.DEFINE_float("learning_rate", 0.001, "Learning rate.")
tf.app.flags.DEFINE_integer("batch_size", 256, "Batch size to use during training.")
tf.app.flags.DEFINE_integer("numEpochs", 30, "Batch size to use during training.")
tf.app.flags.DEFINE_integer("size", 512, "Size of each model layer.")
tf.app.flags.DEFINE_integer("num_layers", 3, "Number of layers in the model.")
tf.app.flags.DEFINE_integer("en_vocab_size", 40000, "English vocabulary size.")
tf.app.flags.DEFINE_integer("en_de_seq_len", 20, "English vocabulary size.")
tf.app.flags.DEFINE_integer("max_train_data_size", 0, "Limit on the size of training data (0: no limit).")
tf.app.flags.DEFINE_integer("steps_per_checkpoint", 100, "How many training steps to do per checkpoint.")
tf.app.flags.DEFINE_string("train_dir", './tmp', "How many training steps to do per checkpoint.")
tf.app.flags.DEFINE_integer("beam_size", 5, "How many training steps to do per checkpoint.")
tf.app.flags.DEFINE_boolean("beam_search", True, "Set to True for beam_search.")
tf.app.flags.DEFINE_boolean("decode", True, "Set to True for interactive decoding.")
FLAGS = tf.app.flags.FLAGS
def create_model(session, forward_only, beam_search, beam_size = 5):
"""Create translation model and initialize or load parameters in session."""
model = Seq2SeqModel(
FLAGS.en_vocab_size, FLAGS.en_vocab_size, [10, 10],
FLAGS.size, FLAGS.num_layers, FLAGS.batch_size,
FLAGS.learning_rate, forward_only=forward_only, beam_search=beam_search, beam_size=beam_size)
ckpt = tf.train.latest_checkpoint(FLAGS.train_dir)
model_path = 'E:\PycharmProjects\Seq-to-Seq\seq2seq_chatbot\\tmp\chat_bot.ckpt-0'
if forward_only:
model.saver.restore(session, model_path)
elif ckpt and tf.gfile.Exists(ckpt.model_checkpoint_path):
print("Reading model parameters from %s" % ckpt.model_checkpoint_path)
model.saver.restore(session, ckpt.model_checkpoint_path)
else:
print("Created model with fresh parameters.")
session.run(tf.initialize_all_variables())
return model
def train():
# prepare dataset
data_path = 'E:\PycharmProjects\Seq-to-Seq\seq2seq_chatbot\data\dataset-cornell-length10-filter1-vocabSize40000.pkl'
word2id, id2word, trainingSamples = loadDataset(data_path)
with tf.Session() as sess:
print("Creating %d layers of %d units." % (FLAGS.num_layers, FLAGS.size))
model = create_model(sess, False, beam_search=False, beam_size=5)
current_step = 0
for e in range(FLAGS.numEpochs):
print("----- Epoch {}/{} -----".format(e + 1, FLAGS.numEpochs))
batches = getBatches(trainingSamples, FLAGS.batch_size, model.en_de_seq_len)
for nextBatch in tqdm(batches, desc="Training"):
_, step_loss = model.step(sess, nextBatch.encoderSeqs, nextBatch.decoderSeqs, nextBatch.targetSeqs,
nextBatch.weights, goToken)
current_step += 1
if current_step % FLAGS.steps_per_checkpoint == 0:
perplexity = math.exp(float(step_loss)) if step_loss < 300 else float('inf')
tqdm.write("----- Step %d -- Loss %.2f -- Perplexity %.2f" % (current_step, step_loss, perplexity))
checkpoint_path = os.path.join(FLAGS.train_dir, "chat_bot.ckpt")
model.saver.save(sess, checkpoint_path, global_step=model.global_step)
def decode():
with tf.Session() as sess:
beam_size = FLAGS.beam_size
beam_search = FLAGS.beam_search
model = create_model(sess, True, beam_search=beam_search, beam_size=beam_size)
model.batch_size = 1
data_path = 'E:\PycharmProjects\Seq-to-Seq\seq2seq_chatbot\data\dataset-cornell-length10-filter1-vocabSize40000.pkl'
word2id, id2word, trainingSamples = loadDataset(data_path)
if beam_search:
sys.stdout.write("> ")
sys.stdout.flush()
sentence = sys.stdin.readline()
while sentence:
batch = sentence2enco(sentence, word2id, model.en_de_seq_len)
beam_path, beam_symbol = model.step(sess, batch.encoderSeqs, batch.decoderSeqs, batch.targetSeqs,
batch.weights, goToken)
paths = [[] for _ in range(beam_size)]
curr = [i for i in range(beam_size)]
num_steps = len(beam_path)
for i in range(num_steps-1, -1, -1):
for kk in range(beam_size):
paths[kk].append(beam_symbol[i][curr[kk]])
curr[kk] = beam_path[i][curr[kk]]
recos = set()
print("Replies --------------------------------------->")
for kk in range(beam_size):
foutputs = [int(logit) for logit in paths[kk][::-1]]
if eosToken in foutputs:
foutputs = foutputs[:foutputs.index(eosToken)]
rec = " ".join([tf.compat.as_str(id2word[output]) for output in foutputs if output in id2word])
if rec not in recos:
recos.add(rec)
print(rec)
print("> ", "")
sys.stdout.flush()
sentence = sys.stdin.readline()
# else:
# sys.stdout.write("> ")
# sys.stdout.flush()
# sentence = sys.stdin.readline()
#
# while sentence:
# # Get token-ids for the input sentence.
# token_ids = sentence_to_token_ids(tf.compat.as_bytes(sentence), vocab)
# # Which bucket does it belong to?
# bucket_id = min([b for b in xrange(len(_buckets))
# if _buckets[b][0] > len(token_ids)])
# # for loc in locs:
# # Get a 1-element batch to feed the sentence to the model.
# encoder_inputs, decoder_inputs, target_weights = model.get_batch(
# {bucket_id: [(token_ids, [],)]}, bucket_id)
#
# _, _, output_logits = model.step(sess, encoder_inputs, decoder_inputs,
# target_weights, bucket_id, True,beam_search)
# # This is a greedy decoder - outputs are just argmaxes of output_logits.
#
# outputs = [int(np.argmax(logit, axis=1)) for logit in output_logits]
# # If there is an EOS symbol in outputs, cut them at that point.
# if EOS_ID in outputs:
# # print outputs
# outputs = outputs[:outputs.index(EOS_ID)]
#
# print(" ".join([tf.compat.as_str(rev_vocab[output]) for output in outputs]))
# print("> ", "")
# sys.stdout.flush()
# sentence = sys.stdin.readline()
def main(_):
if FLAGS.decode:
decode()
else:
train()
if __name__ == "__main__":
tf.app.run()