-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathyolov5_model_handler.py
213 lines (172 loc) · 7.56 KB
/
yolov5_model_handler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
"""
Custom TorchServe model handler for YOLOv5 models.
"""
from ts.torch_handler.base_handler import BaseHandler
from ts.utils.util import map_class_to_label
import numpy as np
import base64
import torch
import torchvision.transforms as tf
import torchvision
import io
from PIL import Image
class ModelHandler(BaseHandler):
"""
A custom model handler implementation.
"""
img_size = 640
"""Image size (px). Images will be resized to this resolution before inference.
"""
def __init__(self):
# call superclass initializer
super().__init__()
def preprocess(self, data):
"""Converts input images to float tensors.
Args:
data (List): Input data from the request in the form of a list of image tensors.
Returns:
Tensor: single Tensor of shape [BATCH_SIZE, 3, IMG_SIZE, IMG_SIZE]
"""
images = []
transform = tf.Compose([
tf.ToTensor(),
tf.Resize((self.img_size, self.img_size))
])
# load images
# taken from https://github.com/pytorch/serve/blob/master/ts/torch_handler/vision_handler.py
# handle if images are given in base64, etc.
for row in data:
# Compat layer: normally the envelope should just return the data
# directly, but older versions of Torchserve didn't have envelope.
image = row.get("data") or row.get("body")
if isinstance(image, str):
# if the image is a string of bytesarray.
image = base64.b64decode(image)
# If the image is sent as bytesarray
if isinstance(image, (bytearray, bytes)):
image = Image.open(io.BytesIO(image))
else:
# if the image is a list
image = torch.FloatTensor(image)
# force convert to tensor
# and resize to [img_size, img_size]
image = transform(image)
images.append(image)
# convert list of equal-size tensors to single stacked tensor
# has shape BATCH_SIZE x 3 x IMG_SIZE x IMG_SIZE
images_tensor = torch.stack(images).to(self.device)
return images_tensor
def postprocess(self, inference_output):
# perform NMS (nonmax suppression) on model outputs
pred = non_max_suppression(inference_output[0])
# initialize empty list of detections for each image
detections = [[] for _ in range(len(pred))]
for i, image_detections in enumerate(pred): # axis 0: for each image
for det in image_detections: # axis 1: for each detection
# x1,y1,x2,y2 in normalized image coordinates (i.e. 0.0-1.0)
xyxy = det[:4] / self.img_size
# confidence value
conf = det[4].item()
# index of predicted class
class_idx = int(det[5].item())
# get label of predicted class
# if missing, then just return class idx
print("class_idx------>"+str(class_idx))
label = self.mapping.get(str(class_idx), class_idx)
detections[i].append({
"x1": xyxy[0].item(),
"y1": xyxy[1].item(),
"x2": xyxy[2].item(),
"y2": xyxy[3].item(),
"confidence": conf,
"class": label
})
# format each detection
return detections
def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, multi_label=False,
labels=(), max_det=300):
"""Runs Non-Maximum Suppression (NMS) on inference results
Returns:
list of detections, on (n,6) tensor per image [xyxy, conf, cls]
"""
nc = prediction.shape[2] - 5 # number of classes
xc = prediction[..., 4] > conf_thres # candidates
# Checks
assert 0 <= conf_thres <= 1, f'Invalid Confidence threshold {conf_thres}, valid values are between 0.0 and 1.0'
assert 0 <= iou_thres <= 1, f'Invalid IoU {iou_thres}, valid values are between 0.0 and 1.0'
# Settings
# (pixels) minimum and maximum box width and height
min_wh, max_wh = 2, 4096
max_nms = 30000 # maximum number of boxes into torchvision.ops.nms()
time_limit = 10.0 # seconds to quit after
redundant = True # require redundant detections
multi_label &= nc > 1 # multiple labels per box (adds 0.5ms/img)
merge = False # use merge-NMS
output = [torch.zeros((0, 6), device=prediction.device)
] * prediction.shape[0]
for xi, x in enumerate(prediction): # image index, image inference
# Apply constraints
# x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height
x = x[xc[xi]] # confidence
# Cat apriori labels if autolabelling
if labels and len(labels[xi]):
l = labels[xi]
v = torch.zeros((len(l), nc + 5), device=x.device)
v[:, :4] = l[:, 1:5] # box
v[:, 4] = 1.0 # conf
v[range(len(l)), l[:, 0].long() + 5] = 1.0 # cls
x = torch.cat((x, v), 0)
# If none remain process next image
if not x.shape[0]:
continue
# Compute conf
x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_conf
# Box (center x, center y, width, height) to (x1, y1, x2, y2)
box = xywh2xyxy(x[:, :4])
# Detections matrix nx6 (xyxy, conf, cls)
if multi_label:
i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T
x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1)
else: # best class only
conf, j = x[:, 5:].max(1, keepdim=True)
x = torch.cat((box, conf, j.float()), 1)[
conf.view(-1) > conf_thres]
# Filter by class
if classes is not None:
x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
# Apply finite constraint
# if not torch.isfinite(x).all():
# x = x[torch.isfinite(x).all(1)]
# Check shape
n = x.shape[0] # number of boxes
if not n: # no boxes
continue
elif n > max_nms: # excess boxes
# sort by confidence
x = x[x[:, 4].argsort(descending=True)[:max_nms]]
# Batched NMS
c = x[:, 5:6] * (0 if agnostic else max_wh) # classes
# boxes (offset by class), scores
boxes, scores = x[:, :4] + c, x[:, 4]
i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS
if i.shape[0] > max_det: # limit detections
i = i[:max_det]
if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean)
# update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
iou = torchvision.box_iou(
boxes[i], boxes) > iou_thres # iou matrix
weights = iou * scores[None] # box weights
x[i, :4] = torch.mm(weights, x[:, :4]).float(
) / weights.sum(1, keepdim=True) # merged boxes
if redundant:
i = i[iou.sum(1) > 1] # require redundancy
output[xi] = x[i]
return output
def xywh2xyxy(x):
# Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x
y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y
return y