-
Notifications
You must be signed in to change notification settings - Fork 1
/
README.Rmd
168 lines (132 loc) · 4.06 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
---
output: github_document
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "100%"
)
```
# `ggstats`: extension to `ggplot2` for plotting stats
<!-- badges: start -->
[![Lifecycle: stable](https://img.shields.io/badge/lifecycle-stable-brightgreen.svg)](https://lifecycle.r-lib.org/articles/stages.html#stable)
[![R-CMD-check](https://github.com/larmarange/ggstats/actions/workflows/R-CMD-check.yaml/badge.svg)](https://github.com/larmarange/ggstats/actions/workflows/R-CMD-check.yaml)
[![Codecov test coverage](https://codecov.io/gh/larmarange/ggstats/graph/badge.svg)](https://app.codecov.io/gh/larmarange/ggstats)
[![CRAN status](https://www.r-pkg.org/badges/version/ggstats)](https://CRAN.R-project.org/package=ggstats)
[![DOI](https://zenodo.org/badge/547360047.svg)](https://zenodo.org/badge/latestdoi/547360047)
<!-- badges: end -->
The `ggstats` package provides new statistics, new geometries and new positions for `ggplot2` and a suite of functions to facilitate the creation of statistical plots.
## Installation & Documentation
To install **stable version**:
```{r eval=FALSE}
install.packages("ggstats")
```
Documentation of stable version: <https://larmarange.github.io/ggstats/>
To install **development version**:
```{r eval=FALSE}
remotes::install_github("larmarange/ggstats")
```
Documentation of development version: <https://larmarange.github.io/ggstats/dev/>
## Plot model coefficients
```{r}
library(ggstats)
mod1 <- lm(Fertility ~ ., data = swiss)
ggcoef_model(mod1)
ggcoef_table(mod1)
```
## Comparing several models
```{r}
mod2 <- step(mod1, trace = 0)
mod3 <- lm(Fertility ~ Agriculture + Education * Catholic, data = swiss)
models <- list(
"Full model" = mod1,
"Simplified model" = mod2,
"With interaction" = mod3
)
ggcoef_compare(models, type = "faceted")
```
## Compute custom proportions
```{r}
library(ggplot2)
ggplot(as.data.frame(Titanic)) +
aes(x = Class, fill = Survived, weight = Freq, by = Class) +
geom_bar(position = "fill") +
geom_text(stat = "prop", position = position_fill(.5)) +
facet_grid(~Sex)
```
## Compute weighted mean
```{r}
data(tips, package = "reshape")
ggplot(tips) +
aes(x = day, y = total_bill, fill = sex) +
stat_weighted_mean(geom = "bar", position = "dodge") +
ylab("Mean total bill per day and sex")
```
## Compute cross-tabulation statistics
```{r}
ggplot(as.data.frame(Titanic)) +
aes(
x = Class, y = Survived, weight = Freq,
size = after_stat(observed), fill = after_stat(std.resid)
) +
stat_cross(shape = 22) +
scale_fill_steps2(breaks = c(-3, -2, 2, 3), show.limits = TRUE) +
scale_size_area(max_size = 20)
```
## Plot survey objects taking into account weights
```{r}
library(survey, quietly = TRUE)
dw <- svydesign(
ids = ~1,
weights = ~Freq,
data = as.data.frame(Titanic)
)
ggsurvey(dw) +
aes(x = Class, fill = Survived) +
geom_bar(position = "fill") +
ylab("Weighted proportion of survivors")
```
## Plot Likert-type items
```{r}
library(dplyr)
likert_levels <- c(
"Strongly disagree",
"Disagree",
"Neither agree nor disagree",
"Agree",
"Strongly agree"
)
set.seed(42)
df <-
tibble(
q1 = sample(likert_levels, 150, replace = TRUE),
q2 = sample(likert_levels, 150, replace = TRUE, prob = 5:1),
q3 = sample(likert_levels, 150, replace = TRUE, prob = 1:5),
q4 = sample(likert_levels, 150, replace = TRUE, prob = 1:5),
q5 = sample(c(likert_levels, NA), 150, replace = TRUE),
q6 = sample(likert_levels, 150, replace = TRUE, prob = c(1, 0, 1, 1, 0))
) |>
mutate(across(everything(), ~ factor(.x, levels = likert_levels)))
gglikert(df)
```
## Connect bars
```{r}
ggplot(diamonds) +
aes(x = clarity, fill = cut) +
geom_bar(width = .5) +
geom_bar_connector(width = .5, linewidth = .25) +
theme_minimal() +
theme(legend.position = "bottom")
```
## Generate a cascade plot
```{r}
diamonds |>
ggcascade(
all = TRUE,
big = carat > .5,
"big & ideal" = carat > .5 & cut == "Ideal"
)
```