-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathar_kd_main.py
346 lines (290 loc) · 14 KB
/
ar_kd_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
from dataset import prepare_dataset
import torch
import torch.nn.functional as F
import torch.optim as optim
from tqdm import tqdm
import numpy as np
import random
import argparse
import datetime
from models import ARTransformer, ARLSTM
from loss import kd_ma_loss, rkd_ma_loss_js, rkd_ma_loss_jf, akd_ma_loss
import csv
import math
from copy import deepcopy
import wandb
def test_mean_v20(device, testloader):
MSE, MAE, correct, cnt = 0, 0, 0, 0
with torch.no_grad():
for chlov, history, v in testloader:
chlov, history, v = chlov.to(device), history.to(device), v.to(device)
chlov, history, v = torch.log(chlov+1), torch.log(history+1), torch.log(v+1)
output = history[:, :, -1].exp().mean(dim=1).log().view(-1, 1)
MSE += ((output - v) ** 2).mean().item()
MAE += ((output - v).abs()).mean().item()
correct += ((output - chlov[:, -1, -1:]) * (v - chlov[:, -1, -1:])).gt(0).float().mean().item()
cnt += 1
MSE /= cnt
MAE /= cnt
correct /= cnt
RMSE = math.sqrt(MSE)
print('Test mean_v20: MSE: {:.6f}, RMSE: {:.6f}, MAE: {:.6f}, ACC: {:.6f} '.format(MSE, RMSE, MAE, correct), file=open(args.log, 'a'), flush=True)
def train(model, device, train_loader, optimizer, epoch, teacher=None, global_step=0):
global args
model.train()
if teacher is not None:
teacher.eval()
train_loss, cnt = 0, 0
random.shuffle(train_loader)
pbar = tqdm(train_loader)
optimizer.zero_grad()
cur_step = global_step
for chlov, history, v in pbar:
chlov, history, v = chlov.to(device), history.to(device), v.to(device)
chlov, history, v = torch.log(chlov+1), torch.log(history+1), torch.log(v+1)
model.zero_grad()
output = model(chlov, history)
ar_loss = model.dist.loss(output, v).mean() # output: (mu, sigma)
loss = ar_loss
if teacher is not None: # has teacher for conducting KD
with torch.no_grad():
t_output = teacher(chlov, history)
kd_loss = kd_ma_loss(teacher_ma=t_output, student_ma=output, dkd=args.dkd)
rkd_loss = rkd_ma_loss_jf(teacher_ma=t_output, student_ma=output)
akd_loss = akd_ma_loss(teacher_ma=t_output, student_ma=output)
loss += args.kd_loss_w * kd_loss + args.rkd_loss_w * rkd_loss + args.akd_loss_w * akd_loss # add kd and rkd loss
loss.backward()
train_loss += loss.item()
if cnt % args.gradient_accum == 0: # batch_size = 32 * gradient_accum
optimizer.step()
optimizer.zero_grad()
cnt += 1
pbar.set_description("Loss %f" % (train_loss / cnt))
cur_step += 1
if cur_step % args.eval_step == 0: # conduct eval here
pass
train_loss /= cnt
print('Train Epoch: {} \tMSE: {:.6f}'.format(epoch, train_loss), file=open(args.log, 'a'), flush=True)
return train_loss, cur_step
def test(model, device, test_loader):
model.eval()
MSE, MAE, correct, cnt = 0, 0, 0, 0
with torch.no_grad():
for _, chlov, history, v in tqdm(test_loader):
chlov, history, v = chlov.to(device), history.to(device), v.to(device)
chlov, history, v = torch.log(chlov+1), torch.log(history+1), torch.log(v+1)
output = model(chlov, history)
if isinstance(output, tuple): # output is (mu, sigma)
output = output[0]
MSE += ((output - v) ** 2).mean().item()
MAE += ((output - v).abs()).mean().item()
correct += ((output - chlov[:, -1, -1:]) * (v - chlov[:, -1, -1:])).gt(0).float().mean().item()
cnt += 1
MSE /= cnt
MAE /= cnt
correct /= cnt
RMSE = math.sqrt(MSE)
print('Test set: MSE: {:.6f}, RMSE: {:.6f}, MAE: {:.6f}, ACC: {:.6f} '.format(MSE, RMSE, MAE, correct), file=open(args.log, 'a'), flush=True)
print('Test set: MSE: {:.6f}, RMSE: {:.6f}, MAE: {:.6f}, ACC: {:.6f} '.format(MSE, RMSE, MAE, correct), flush=True)
return MSE, RMSE, MAE, correct
def valid(model, device, dev_loader):
model.eval()
MSE, cnt = 0, 0
with torch.no_grad():
for _, chlov, history, v in tqdm(dev_loader):
chlov, history, v = chlov.to(device), history.to(device), v.to(device)
chlov, history, v = torch.log(chlov+1), torch.log(history+1), torch.log(v+1)
output = model(chlov, history)
if isinstance(output, tuple): # output is (mu, sigma)
output = output[0]
MSE += ((output - v) ** 2).mean().item()
cnt += 1
MSE /= cnt
print('Valid set: MSE: {:.6f}'.format(MSE), file=open(args.log, 'a'), flush=True)
print('Valid set: MSE: {:.6f}'.format(MSE), flush=True)
return MSE
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def set_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
np.random.seed(seed)
random.seed(seed)
def test_volume_order(model, device, test_loader):
# evaluate the volume relative relationship
model.eval()
reversed_cnt = 0
tot = 0
#random.shuffle(test_loader)
oracle_v, predict_v = [], []
with torch.no_grad():
for _, chlov, history, v in tqdm(test_loader):
chlov, history, v = chlov.to(device), history.to(device), v.to(device)
chlov, history, v = torch.log(chlov+1), torch.log(history+1), torch.log(v+1)
output = model(chlov, history)
if isinstance(output, tuple): # output is (mu, sigma)
output = output[0]
predict_v.append(output.squeeze())
oracle_v.append(v.squeeze())
# predict_v = random.choice()
from sklearn.utils import shuffle
predict_v, oracle_v = shuffle(predict_v, oracle_v)
# random.shuffle(predict_v)
# random.shuffle(oracle_v)
predict_v = torch.cat(predict_v[:400], dim=0) #
oracle_v = torch.cat(oracle_v[:400], dim=0)
print(predict_v.size())
print(oracle_v.size())
oracle_diff = oracle_v.unsqueeze(1) - oracle_v.unsqueeze(0) # bsz, bsz v - v
predict_diff = predict_v.unsqueeze(1) - predict_v.unsqueeze(0) # bsz, bsz
dot = (oracle_diff * predict_diff).reshape(-1).half() #.cpu()
incorrect_order = torch.sum(torch.where(dot < 0, 1, 0)) # ( bsz x bsz)
reversed_cnt += incorrect_order.item()
bsz = len(predict_v)
tot += bsz * (bsz -1 ) # C_n^2 = n * (n-1)
score = 1- reversed_cnt / tot
print('Test set: example number {:d} incorrect num {:d} score: {:.4f}'.format(tot, reversed_cnt, score), file=open(args.log, 'a'), flush=True)
print('Test set: example number {:d} incorrect num {:d} score: {:.4f}'.format(tot, reversed_cnt, score), flush=True)
return score
def main():
global args
parser = argparse.ArgumentParser()
# data
parser.add_argument('--full_chlov', default=True, type=str2bool)
parser.add_argument('--log', default='', type=str)
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--dataset', default='five_minute', type=str)
# learn
parser.add_argument('--batch_size', default=32, type=int)
parser.add_argument('--gradient_accum', default=1, type=int)
parser.add_argument('--max_epoch', default=5, type=int)
parser.add_argument('--lr', default=1e-3, type=float)
parser.add_argument('--lr_decay', default=1.0, type=float)
parser.add_argument('--patience', default=-1, type=float)
parser.add_argument('--eval_step', default=200, type=float)
# model
parser.add_argument('--model', default='ARTransformer', type=str)
parser.add_argument('--input_size', default=200, type=int)
parser.add_argument('--hidden_size', default=200, type=int)
parser.add_argument('--num_layer', default=1, type=int)
parser.add_argument('--attn_pooling', default=True, type=str2bool) # LSTM
parser.add_argument('--feature_size', default=30, type=int) # LSTM
parser.add_argument('--ar', default='gs', type=str) # Gaussian or NegativeBinary
# KD
parser.add_argument('--kd_mode', default='min', type=str)
parser.add_argument('--teacher_path', default='', type=str)
parser.add_argument('--student_path', default='', type=str)
parser.add_argument('--teacher_num_layer', default=6, type=int)
parser.add_argument('--kd_loss_w', default=0.0, type=float)
parser.add_argument('--rkd_loss_w', default=0.0, type=float)
parser.add_argument('--akd_loss_w', default=0.0, type=float)
parser.add_argument('--dkd', action='store_true', default=False)
## Data Ratio
parser.add_argument('--data_ratio', default=1.0, type=float)
args = parser.parse_args()
# wandb.init(project="FinKD")
set_seed(args.seed)
if args.log == '':
args.log = datetime.datetime.now().strftime("log/%Y-%m-%d-%H:%M:%S.txt")
print(args, file=open(args.log, 'a'), flush=True)
trainloader, devloader, testloader = prepare_dataset(args.batch_size, args.dataset)
device = torch.device("cuda")
if len(args.student_path) > 0 : # do evaluation
model = torch.load(args.student_path, map_location='cpu')
model.to(device)
test_volume_order(model, device, testloader)
exit(0)
trainloader.batch_sampler.batch_size = args.batch_size
if args.data_ratio < 1:
num_train_samples = len(trainloader.batch_sampler.data_source)
random.shuffle(trainloader.batch_sampler.data_source)
print("Original Train Sample: %d" % num_train_samples)
trainloader.batch_sampler.data_source = trainloader.batch_sampler.data_source[:int(args.data_ratio * num_train_samples)]
print("Downsampled Train Sample: %d" % len(trainloader.batch_sampler.data_source))
test_mean_v20(device, testloader)
max_valid_MSE, max_MSE, max_RMSE, max_MAE, max_ACC = 1e10, 0, 0, 0, 0
model_dict = { 'ARTransformer': ARTransformer, 'ARLSTM': ARLSTM}
model = model_dict[args.model](args).to(device)
if args.teacher_path != "":
print("Loading teacher model")
teacher = torch.load(args.teacher_path, map_location='cpu')
teacher.to(device)
print("Teacher model loading finished, testing teacher:")
test(teacher, device, testloader)
else:
teacher = None
student_total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
teacher_total_params = sum(p.numel() for p in teacher.parameters() if p.requires_grad)
print(student_total_params)
print(teacher_total_params)
input()
optimizer = optim.Adam(model.parameters(), lr=args.lr)
scheduler = optim.lr_scheduler.ExponentialLR(optimizer, args.lr_decay)
global_step = 0
early_stop = False
patience_cnt = 0
patience = args.patience
for epoch in range(1, args.max_epoch + 1):
if early_stop:
print("Early Stoppping after patience")
break
model.train()
if teacher is not None:
teacher.eval()
train_loss, cnt = 0, 0
# random.shuffle(trainloader)
pbar = tqdm(trainloader)
optimizer.zero_grad()
for ticker, chlov, history, v in pbar:
chlov, history, v = chlov.to(device), history.to(device), v.to(device)
chlov, history, v = torch.log(chlov+1), torch.log(history+1), torch.log(v+1)
model.zero_grad()
output = model(chlov, history)
ar_loss = model.dist.loss(output, v).mean() # output: (mu, sigma)
loss = ar_loss
if teacher is not None: # has teacher for conducting KD
with torch.no_grad():
t_output = teacher(chlov, history)
kd_loss = kd_ma_loss(teacher_ma=t_output, student_ma=output, dkd=args.dkd)
rkd_loss = rkd_ma_loss_jf(teacher_ma=t_output, student_ma=output)
akd_loss = akd_ma_loss(teacher_ma=t_output, student_ma=output)
loss += args.kd_loss_w * kd_loss + args.rkd_loss_w * rkd_loss + args.akd_loss_w * akd_loss # add kd and rkd loss
loss.backward()
train_loss += loss.item()
if cnt % args.gradient_accum == 0: # batch_size = 32 * gradient_accum
optimizer.step()
optimizer.zero_grad()
cnt += 1
pbar.set_description("Loss %f" % (train_loss / cnt))
global_step += 1
if global_step % args.eval_step == 0: # conduct eval here
valid_MSE = valid(model, device, devloader)
MSE, RMSE, MAE, ACC = test(model, device, testloader)
if valid_MSE < max_valid_MSE:
max_valid_MSE, max_MSE, max_RMSE, max_MAE, max_ACC = valid_MSE, MSE, RMSE, MAE, ACC
model.cpu()
torch.save(model, args.log.replace('.txt', '.pt'))
model.cuda()
patience_cnt = 0
else:
patience_cnt += 1
model.train()
if patience > 0 and patience_cnt > patience:
early_stop = True
break
scheduler.step()
train_loss /= cnt
print('Train Epoch: {} \tMSE: {:.6f}'.format(epoch, train_loss), file=open(args.log, 'a'), flush=True)
f = open('deep_ar_kd_ret.csv', 'a', encoding='utf-8')
csv_writer = csv.writer(f)
csv_writer.writerow([args.dataset, args.model, 'bsz: ', args.batch_size, 'patience: ', args.patience, 'data ratio: ', args.data_ratio, 'sample correlation:', args.cor, 'num_layer',args.num_layer, 'ar mode: ', args.ar, 'kdw: ', args.kd_loss_w, 'rkd_w: ', args.rkd_loss_w, 'akd_w: ', args.akd_loss_w, 'seed: ', args.seed, 'ret: ',max_MSE, max_RMSE, max_MAE, max_ACC])
f.close()
main()