-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathglue_mrpc.sh
43 lines (40 loc) · 1.46 KB
/
glue_mrpc.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
GPU="0"
EPOCH=5
LR=2e-5
BSZ=16
SEED=1234
TASK_NAME=mrpc
# train file, with instance difficulty label
TRAIN_FILE=data_difficulty/${TASK_NAME}.train.dif_5seeds-2level.json
CONF_MARGIN=0.5
DAR_WEIGHT=0.5
LAYER=2
#PATH_TO_SMALL_BERT
SMALL_MODEL=uncased_L-2_H-768_A-12 #-uncased
BIG_MODEL=bert-base-uncased
CASCADE_MODEL="${SMALL_MODEL};${BIG_MODEL}"
OUTPUT_DIR=saved_models/${TASK_NAME}_${SEED}_${LAYER}L-12L
# Training
CUDA_VISIBLE_DEVICES=$GPU python run_cascade.py --train_file $TRAIN_FILE \
--cascade_model_name_or_path $CASCADE_MODEL --fp16 --cascade_model_layers "2;12" \
--confidence_margin $CONF_MARGIN --dar_weight $DAR_WEIGHT \
--task_name $TASK_NAME --overwrite_output_dir \
--do_eval --do_train --evaluation_strategy steps --metric_for_best_model "accuracy" \
--save_steps 200 --logging_steps 200 --save_total_limit 2 \
--max_seq_length 128 \
--per_device_train_batch_size ${BSZ} \
--learning_rate $LR \
--num_train_epochs $EPOCH --seed $SEED \
--output_dir "$OUTPUT_DIR"
# Evaluation, take confidence threshold as 0.5 for example
for TH in 0.6 0.7 0.8 0.9
do
CUDA_VISIBLE_DEVICES=$GPU python run_cascade.py --train_file $TRAIN_FILE \
--saved_model_path "$OUTPUT_DIR" \
--cascade_model_name_or_path $CASCADE_MODEL --fp16 --cascade_model_layers "2;12" \
--confidence_threshold $TH --task_name $TASK_NAME \
--do_eval --infer_mode "cascade"\
--max_seq_length 128 \
--per_device_eval_batch_size ${BSZ} \
--output_dir "$OUTPUT_DIR"
done