-
Notifications
You must be signed in to change notification settings - Fork 66
/
Copy pathexample.py
34 lines (25 loc) · 880 Bytes
/
example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import pandas as pd
from sklearn.metrics import mean_squared_error
from tinygbt import Dataset, GBT
print('Load data...')
df_train = pd.read_csv('./data/regression.train', header=None, sep='\t')
df_test = pd.read_csv('./data/regression.test', header=None, sep='\t')
y_train = df_train[0].values
y_test = df_test[0].values
X_train = df_train.drop(0, axis=1).values
X_test = df_test.drop(0, axis=1).values
train_data = Dataset(X_train, y_train)
eval_data = Dataset(X_test, y_test)
params = {}
print('Start training...')
gbt = GBT()
gbt.train(params,
train_data,
num_boost_round=20,
valid_set=eval_data,
early_stopping_rounds=5)
print('Start predicting...')
y_pred = []
for x in X_test:
y_pred.append(gbt.predict(x, num_iteration=gbt.best_iteration))
print('The rmse of prediction is:', mean_squared_error(y_test, y_pred) ** 0.5)