-
Notifications
You must be signed in to change notification settings - Fork 0
/
9_MaximumSubarray.cpp
66 lines (58 loc) · 1.61 KB
/
9_MaximumSubarray.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
/*
https://leetcode.com/problems/maximum-subarray/
Leetcode : 53. Maximum Subarray - Easy
Given an integer array nums, find the contiguous subarray
(containing at least one number) which has the largest sum and return its sum.
Follow up: If you have figured out the O(n) solution,
try coding another solution using the divide and conquer approach, which is more subtle.
Example 1: Input: nums = [-2,1,-3,4,-1,2,1,-5,4] Output: 6
Explanation: [4,-1,2,1] has the largest sum = 6.
Example 2: Input: nums = [1] Output: 1
Example 3: Input: nums = [0] Output: 0
Example 4: Input: nums = [-1] Output: -1
Example 5: Input: nums = [-2147483647] Output: -2147483647
Constraints:
1 <= nums.length <= 2 * 104
-231 <= nums[i] <= 231 - 1
*/
#include<iostream>
#include<vector>
#include<climits>
using namespace std;
class Solution {
public:
int maxSubArray(vector<int>& nums) {
int sum = INT_MIN;
int cur_sum = 0;
for (auto x : nums) {
cur_sum += x;
if (sum < cur_sum)
sum = cur_sum;
if (cur_sum < 0)
cur_sum = 0;
}
return sum;
}
};
void printVI(vector<int>& vi) {
cout << "[";
for (auto x : vi) {
cout << x << ", ";
}
cout << "]" << endl;
}
void testSolution(vector<int> A) {
cout << "Input: ";
printVI(A);
Solution s;
cout<<"Result: "<<s.maxSubArray(A);
cout << "\n--------------------------------\n";
}
int main() {
testSolution({ -4,5,-6,7,1,-2, 9 });
testSolution({ 4,-5,6,-7,1,2 });
testSolution({ -3, 1 });
testSolution({ -1, 2 });
testSolution({-5});
return 0;
}