-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathloss.py
50 lines (40 loc) · 1.62 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
# input: pred and label
# output: total losses
import torch
import torch.nn.functional as F
def cls_cross_entropy_loss(pred_cls, target_cls):
"""
Args:
pred_cls: logits Tensor (N, 2K, ft_size, ft_size)
target_cls: {-1,0,1} Tensor (N, K, ft_size, ft_size)
Returns:
cls loss: scalar
"""
N, KK, SIZE, SIZE = pred_cls.shape
pred_cls = pred_cls.view(N, 2, -1, SIZE, SIZE) # (N, 2, K, ft_size, ft_size)
pred_cls = pred_cls.permute(0, 2, 3, 4, 1).contiguous() # (N, K, ft_size, ft_size, 2)
neg_idx = torch.where(target_cls == 0)
pos_idx = torch.where(target_cls == 1)
target_pos = target_cls[pos_idx] # (#pos,)
target_neg = target_cls[neg_idx] # (#neg,)
pred_pos = pred_cls[pos_idx] # (#pos, 2)
pred_neg = pred_cls[neg_idx] # (#pos, 2)
cls_pos_loss = F.cross_entropy(input=pred_pos, target=target_pos)
cls_neg_loss = F.cross_entropy(input=pred_neg, target=target_neg)
return 0.5 * cls_pos_loss + 0.5 * cls_neg_loss
def reg_smooth_l1_loss(pred_reg, target_reg, mask):
"""
Args:
pred_reg: Tensor (N, 4K, ft_size, ft_size)
target_reg: Tensor (N, 4, K, ft_size, ft_size)
mask: Tensor (N, K, ft_size, ft_size)
pos_num: number of positive anchors (N,)
Returns:
cls loss: scalar
"""
N, _, SIZE, SIZE = pred_reg.shape
pred_reg = pred_reg.view(N, 4, -1 , SIZE, SIZE) # (N, 4, K, ft_size, ft_size)
diff = F.smooth_l1_loss(pred_reg, target_reg, reduction='none') # won't change shape
diff = diff.sum(dim=1).view(N, -1, SIZE, SIZE)
loss = diff * mask
return loss.sum().div(N)