-
-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy pathmuon.py
66 lines (51 loc) · 1.65 KB
/
muon.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import math
import torch
import torch.nn as nn
from zeta import Muon # Assuming muon.py contains our implementation
# Simple transformer layer
class SimpleTransformer(nn.Module):
def __init__(self, d_model=256):
super().__init__()
self.query = nn.Linear(d_model, d_model)
self.key = nn.Linear(d_model, d_model)
self.value = nn.Linear(d_model, d_model)
self.output = nn.Linear(d_model, d_model)
def forward(self, x):
q = self.query(x)
k = self.key(x)
v = self.value(x)
# Simple attention
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(k.size(-1))
attn = torch.softmax(scores, dim=-1)
out = torch.matmul(attn, v)
return self.output(out)
# Create model
model = SimpleTransformer()
# Separate parameters for different optimizers
muon_params = []
other_params = []
for name, param in model.named_parameters():
if any(x in name for x in ["query", "key", "value"]):
muon_params.append(param)
else:
other_params.append(param)
# Create optimizers
muon_opt = Muon(muon_params, lr=0.001)
adam_opt = torch.optim.AdamW(other_params, lr=0.001)
# Training loop example
batch_size, seq_len, d_model = 32, 16, 256
x = torch.randn(batch_size, seq_len, d_model)
target = torch.randn(batch_size, seq_len, d_model)
for step in range(10):
# Zero gradients
muon_opt.zero_grad()
adam_opt.zero_grad()
# Forward pass
output = model(x)
loss = nn.MSELoss()(output, target)
# Backward pass
loss.backward()
# Update parameters
muon_opt.step()
adam_opt.step()
print(f"Step {step}, Loss: {loss.item():.4f}")