- Deep Learning in Random Neural Fields: Numerical Experiments via Neural Tangent Kernel
- Implementation of PyTorch
- PyTorch 1.10.2
- torchvision 0.11.3
- others can be installed with the following:
pip install -r requirements.txt
src/config/config.yaml
DATA:
NAME: mnist # Now: mnist or fashion
CLASS: 10 # number of class of mnist
DATA_NUM: 100
SPLIT_RATIO: 0.2
MODEL:
INPUT_FEATURES: 784 # mnist: 28x28=784
MID_FEATURES: 1024
B_SIGMA: 0.1
INITIALIZER:
TYPE: gaussian # vanilla, gaussian, withmp, mexican, matern
R_SIGMA: 0.1 # for receptive field
S_SIGMA: 0.1 # for correlation
M_SIGMA: 0.1 # for mexican hat
NU: 0.5 # for matern kernel
GENERAL:
EPOCH: 1000
GPUS: [1]
NOTEBOOK: true # if you use script, switch false
@article{watanabe2023deep,
title={Deep learning in random neural fields: Numerical experiments via neural tangent kernel},
author={Watanabe, Kaito and Sakamoto, Kotaro and Karakida, Ryo and Sonoda, Sho and Amari, Shun-ichi},
journal={Neural Networks},
volume={160},
pages={148--163},
year={2023},
publisher={Elsevier}
}