-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathClassifier_Head.py
68 lines (55 loc) · 4.59 KB
/
Classifier_Head.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
from tensorflow import keras
import tensorflow as tf
import numpy as np
import pandas as pd
import os
def Classifier_Head(Model_save_Directory,train_embed,test_embed,train_labels,test_labels):
head = keras.Sequential()
head.add(keras.layers.InputLayer(input_shape=1280))
head.add(keras.layers.Dense(320))
head.add(keras.layers.LeakyReLU())
head.add(keras.layers.Dense(80))
head.add(keras.layers.LeakyReLU())
head.add(keras.layers.Dense(20))
head.add(keras.layers.LeakyReLU())
head.add(keras.layers.Dense(1,activation='sigmoid'))
head.compile(loss=keras.losses.BinaryCrossentropy(from_logits=False),optimizer='Adam',metrics=['accuracy',keras.metrics.AUC(from_logits=False)])
save = keras.callbacks.ModelCheckpoint(Model_save_Directory,monitor='val_accuracy',mode='max',verbose=1,save_best_only=True)
head.fit(x=train_embed,y=train_labels,validation_data=(test_embed,test_labels),epochs=100,batch_size=32,use_multiprocessing=True,callbacks=save)
def Final_Embeddings(shared_model,x_task_model,ct_task_model,shared_x_ray_train_input,shared_x_ray_test_input,shared_ct_train_input,shared_ct_test_input,task_x_ray_train_input,task_x_ray_test_input,task_ct_train_input,task_ct_test_input):
for i in x_task_model.layers[:-1]:
task_x_ray_train_input = i(task_x_ray_train_input)
task_x_ray_test_input = i(task_x_ray_test_input)
for j in ct_task_model.layers[:-1]:
task_ct_train_input = j(task_ct_train_input)
task_ct_test_input = j(task_ct_test_input)
for k in shared_model.layers[:-1]:
shared_x_ray_train_input= k(shared_x_ray_train_input)
shared_x_ray_test_input = k(shared_x_ray_test_input)
shared_ct_train_input = k(shared_ct_train_input)
shared_ct_test_input = k(shared_ct_test_input)
x_ray_train_embed = np.concatenate((task_x_ray_train_input,shared_x_ray_train_input),axis=1)
x_ray_test_embed = np.concatenate((task_x_ray_test_input,shared_x_ray_test_input),axis=1)
ct_scan_train_embed = np.concatenate((task_ct_scan_train_input,shared_ct_scan_train_input),axis=1)
ct_scan_test_embed = np.concatenate((task_ct_scan_test_input,shared_ct_scan_test_input),axis=1)
return x_ray_train_embed,x_ray_test_embed,ct_scan_train_embed,ct_scan_test_embed
shared = keras.models.load_model(input("Enter the File Path for Shared Features Module --> "))
task_x = keras.models.load_model(input("Enter the File Path for Chest X-Ray Task Specific Features Module --> "))
task_ct = keras.models.load_model(input("Enter the File Path for CT-Scan Task Specific Features Module --> "))
shared_x_ray_train_input = np.load(input("Enter the File Path for Chest X-Ray Train Embeddings (For Shared Features Module) -->"))
shared_x_ray_test_input = np.load(input("Enter the File Path for Chest X-Ray Test Embeddings (For Shared Features Module) -->"))
shared_ct_scan_train_input = np.load(input("Enter the File Path for CT-Scan Train Embeddings (For Shared Features Module) -->"))
shared_ct_scan_test_input = np.load(input("Enter the File Path for CT-Scan Test Embeddings (For Shared Features Module) -->"))
task_x_ray_train_input = np.load(input("Enter the File Path for Chest X-Ray Train Embeddings (For Task Specific Features Module) -->"))
task_x_ray_test_input = np.load(input("Enter the File Path for Chest X-Ray Test Embeddings (For Task Specific Features Module) -->"))
task_ct_scan_train_input = np.load(input("Enter the File Path for CT-Scan Train Embeddings (For Task Specific Features Module) -->"))
task_ct_scan_test_input = np.load(input("Enter the File Path for CT-Scan Test Embeddings (For Task Specific Features Module) -->"))
x_train_labels = np.load(input("Enter the File Path for Chest X-Ray Train Data Labels --> "))
x_test_labels = np.load(input("Enter the File Path for Chest X-Ray Test Data Labels --> "))
ct_train_labels = np.load(input("Enter the File Path for CT-Scans Train Data Labels --> "))
ct_test_labels = np.load(input("Enter the File Path for CT-Scans Test Data Labels --> "))
x_ray_train_embed,x_ray_test_embed,ct_scan_train_embed,ct_scan_test_embed = Final_Embeddings(shared,task_x,task_ct,shared_x_ray_train_input,shared_x_ray_test_input,shared_ct_train_input,shared_ct_test_input,task_x_ray_train_input,task_x_ray_test_input,task_ct_scan_train_input,task_ct_scan_test_input)
classifier_x_dir = input("Enter the File Path for saving the Chest X-Ray Classifier Head --> ")
classifier_ct_dir = input("Enter the File Path for saving the CT-Scans Classifier Head --> ")
Classifier_Head(classifier_x_dir,x_ray_train_embed,x_ray_test_embed,x_train_labels,x_test_labels)
Classifier_Head(classifier_ct_dir,ct_scan_train_embed,ct_scan_test_embed,ct_train_labels,ct_test_labels)