-
Notifications
You must be signed in to change notification settings - Fork 0
/
mind_map.py
73 lines (56 loc) · 2.75 KB
/
mind_map.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import os
from PIL import Image, ImageOps, ImageSequence
import numpy as np
import torch
# 导入 folder_paths 模块
import folder_paths # type: ignore
from .hua_icons import icons
class Go_to_image:
_color_channels = 3 # 假设RGB颜色通道数为3
@classmethod
def INPUT_TYPES(s): #定义输入类型
input_dir = folder_paths.get_input_directory() # 获取输入目录
files = sorted(os.listdir(input_dir)) # 获取输入目录下的文件列表,并按字母排序
return {
"required": { # 必需输入
"image": (files, {"image_upload": True}), # 图像文件名,允许上传
"pos_text": ("STRING", {"multiline": True, "default": "positive text"}), # 正面文本,默认为"positive text"
"images": ("IMAGE", ),
}
}
RETURN_TYPES = ("IMAGE", "MASK", "CONDITIONING") #返回类型,为3个输出口
FUNCTION = "load_image" #函数名称
CATEGORY = icons.get("hua_boy_one") #传递一级类显示在树列表
def load_image(self, image):
image_path = folder_paths.get_annotated_filepath(image)
img = Image.open(image_path)
output_images = []
output_masks = []
for i in ImageSequence.Iterator(img):
i = ImageOps.exif_transpose(i)
if i.mode == 'I':
i = i.point(lambda i: i * (1 / 255))
image = i.convert("RGB")
image = np.array(image).astype(np.float32) / 255.0
image = torch.from_numpy(image)[None,]
if 'A' in i.getbands():
mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
mask = 1. - torch.from_numpy(mask)
else:
mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
output_images.append(image)
output_masks.append(mask.unsqueeze(0))
if len(output_images) > 1:
output_image = torch.cat(output_images, dim=0)
output_mask = torch.cat(output_masks, dim=0)
else:
output_image = output_images[0]
output_mask = output_masks[0]
return (output_image, output_mask)
NODE_CLASS_MAPPINGS = {
"brucelee": Go_to_image # 赋值类的名称
}
# A dictionary that contains the friendly/humanly readable titles for the nodes
NODE_DISPLAY_NAME_MAPPINGS = { #这是个字典,它将节点名称映射到人类容易读取的名字,可以通过 NODE_DISPLAY_NAME_MAPPINGS["Hua"] 访问到 "Demo Node" (第二级子目录)
"brucelee": "思维导图" # 相当于传递上面的:"brucelee"= Go_to_image = "brucelee": "HUA_go_image"
}