DART-Eval is a suite of benchmarks to assess the utility of human regulatory DNA representations learned by self-supervised DNA Language Models. DART-Eval assesses zero-shot, probed, and fine-tuned performance on five sets of biologically relevant tasks of increasing difficulty.
For more details, see the DART-Eval paper (NeurIPS 2024): https://arxiv.org/pdf/2412.05430
All data is available for download at Synapse project syn59522070
.
The Synapse file repository is organized by task. Each task directory contains data.h5
, an HDF5 file containing processed inputs and outputs for the task. See the Synapse project wiki for more information on the structure of the HDF5 files.
Additionally, for reproducibility, each task directory contains raw data, inputs, and final outputs for each model evaluated in the manuscript. (See the "Tasks" section for more information on each task.)
The commands in this section reproduce the results for each task in the paper. The output files mirror the structure of the Synapse project.
Prior to running analyses, set the $DART_WORK_DIR
environment variable. This directory will be used to store intermediate files and results.
Additionally, download the genome reference files from syn60581044
into $DART_WORK_DIR/refs
, keeping the file names. These genome references are used across all tasks.
In the following commands, $MODEL
represents the evaluated DNALM architecture, one of caduceus
, dnabert2
, gena_lm
, hyenadna
, mistral_dna
, and nucleotide_transformer
. $MODEL_SPECIFIC_NAME
represents the specific version of each model, namely one of caduceus-ps_seqlen-131k_d_model-256_n_layer-16
, DNABERT-2-117M
, gena-lm-bert-large-t2t
, hyenadna-large-1m-seqlen-hf
, Mistral-DNA-v1-1.6B-hg38
, and nucleotide-transformer-v2-500m-multi-species
.
All inputs, intermediate files, and outputs for this task are available for download at syn60581046
.
This task utilizes the set of ENCODE v3 candidate cis-regulatory elements (cCREs). A BED-format file of cCRE genomic coordinates is available at syn62153306
. This file should be downloaded to $DART_WORK_DIR/task_1_ccre/input_data/ENCFF420VPZ.bed
.
python -m dnalm_bench.task_1_paired_control.dataset_generators.encode_ccre --ccre_bed $DART_WORK_DIR/task_1_ccre/input_data/ENCFF420VPZ.bed --output_file $DART_WORK_DIR/task_1_ccre/processed_inputs/ENCFF420VPZ_processed.tsv
This script expands each element to 350 bp, centered on the midpoint of the element. The output file is a TSV with the following columns:
chrom
: chromosomeinput_start
: start position of the length-expanded elementinput_end
: end position of the length-expanded elementccre_start
: start position of the original cCREccre_end
: end position of the original cCREccre_relative_start
: start position of the original cCRE relative to the length-expanded elementccre_relative_end
: end position of the original cCRE relative to the length-expanded elementreverse_complement
: 1 if the element is reverse complemented, 0 otherwise
python -m dnalm_bench.task_1_paired_control.zero_shot.encode_ccre.$MODEL
Extract final-layer embeddings
python -m dnalm_bench.task_1_paired_control.supervised.encode_ccre.extract_embeddings.probing_head_like
Train probing-head-like ab initio model
python -m dnalm_bench.task_1_paired_control.supervised.encode_ccre.ab_initio.probing_head_like
Evaluate probing-head-like ab initio model
python -m dnalm_bench.task_1_paired_control.supervised.encode_ccre.eval_ab_initio.probing_head_like
Extract final-layer embeddings from each model
python -m dnalm_bench.task_1_paired_control.supervised.encode_ccre.extract_embeddings.$MODEL
Train probing models
python -m dnalm_bench.task_1_paired_control.supervised.encode_ccre.train_classifiers.$MODEL
Evaluate probing models
python -m dnalm_bench.task_1_paired_control.supervised.encode_ccre.eval_probing.$MODEL
Train fine-tuned models
python -m dnalm_bench.task_1_paired_control.supervised.encode_ccre.finetune.$MODEL
Evaluate fine-tuned models
python -m dnalm_bench.task_1_paired_control.supervised.encode_ccre.eval_finetune.$MODEL
All inputs, intermediate files, and outputs for this task are available for download at syn60581043
.
This task utilizes the set of HOCOMOCO v12 transcription factor sequence motifs. A MEME-format file of motifs is available at syn60756095
. This file should be downloaded to $DART_WORK_DIR/task_2_footprinting/input_data/H12CORE_meme_format.meme
.
Additionally, this task utilizes a set of sequences and shuffled negatives generated from Task 1.
python -m dnalm_bench.task_2_5_single.dataset_generators.transcription_factor_binding.h5_to_seqs $DART_WORK_DIR/task_1_ccre/embeddings/probing_head_like.h5 $DART_WORK_DIR/task_2_footprinting/processed_data/raw_seqs_350.txt
python -m dnalm_bench.task_2_5_single.dataset_generators.motif_footprinting_dataset --input_seqs $DART_WORK_DIR/task_2_footprinting/processed_data/raw_seqs_350.txt --output_file $DART_WORK_DIR/task_2_footprinting/processed_data/footprint_dataset_350.txt --meme_file $DART_WORK_DIR/task_2_footprinting/input_data/H12CORE_meme_format.meme
python -m dnalm_bench.task_2_5_single.experiments.task_2_transcription_factor_binding.embeddings.$MODEL
python -m dnalm_bench.task_2_5_single.experiments.task_2_transcription_factor_binding.footprint_eval_embeddings --input_seqs $DART_WORK_DIR/task_2_footprinting/processed_data/footprint_dataset_350_v1.txt --embeddings $DART_WORK_DIR/task_2_footprinting/outputs/embeddings/$MODEL_SPECIFIC_NAME.h5 --output_file $DART_WORK_DIR/task_2_footprinting/outputs/evals/embeddings/$MODEL_SPECIFIC_NAME.tsv
python -m dnalm_bench.task_2_5_single.experiments.task_2_transcription_factor_binding.likelihoods.$MODEL
python -m dnalm_bench.task_2_5_single.experiments.task_2_transcription_factor_binding.footprint_eval_likelihoods --input_seqs $DART_WORK_DIR/task_2_footprinting/processed_data/footprint_dataset_350_v1.txt --likelihoods $DART_WORK_DIR/task_2_footprinting/outputs/likelihoods/$MODEL_SPECIFIC_NAME.tsv --output_file $DART_WORK_DIR/task_2_footprinting/outputs/evals/likelihoods/$MODEL_SPECIFIC_NAME.tsv
dnalm_bench/task_2_5_single/experiments/eval_footprinting_likelihood.ipynb
- figure production for likelihood-based evaluation
dnalm_bench/task_2_5_single/experiments/eval_footprinting_embedding.ipynb
- figure production for embedding-based evaluation
dnalm_bench/task_2_5_single/experiments/footprinting_pairwise.ipynb
- cross-model pairwise production plots
dnalm_bench/task_2_5_single/experiments/footprinting_conf_intervals.ipynb
- confidence interval calculation
All inputs, intermediate files, and outputs for this task are available for download at syn60581042
.
This task utilizes ATAC-Seq experimental readouts from five cell lines. Input files are available at syn60581166
. This directory should be cloned to $DART_WORK_DIR/task_3_peak_classification/input_data
.
Using the input peaks from ENCODE, generate a consensus peakset:
python -m dnalm_bench.task_2_5_single.dataset_generators.peak_classification.make_consensus_peakset
Then, generate individual counts matrices for each sample, using input BAM files from ENCODE and the consensus peakset:
python -m dnalm_bench.task_2_5_single.dataset_generators.peak_classification.generate_indl_counts_matrix GM12878 $BAM_FILE
python -m dnalm_bench.task_2_5_single.dataset_generators.peak_classification.generate_indl_counts_matrix H1ESC $BAM_FILE
python -m dnalm_bench.task_2_5_single.dataset_generators.peak_classification.generate_indl_counts_matrix HEPG2 $BAM_FILE
python -m dnalm_bench.task_2_5_single.dataset_generators.peak_classification.generate_indl_counts_matrix IMR90 $BAM_FILE
python -m dnalm_bench.task_2_5_single.dataset_generators.peak_classification.generate_indl_counts_matrix K562 $BAM_FILE
Concatenate the counts matrices and generate DESeq inputs:
python -m dnalm_bench.task_2_5_single.dataset_generators.peak_classification.generate_merged_counts_matrix
Finally, run DESeq for each cell type to obtain differentially accessible peaks for each cell type:
Rscript dnalm_bench.task_2_5_single.dataset_generators.peak_classification.DESeqAtac.R
The final output consists of the differentially accessible peaks, available at syn61788656
.
Use FIMO to generate motif scores for each peak sequence.
The following notebook contains information on how to produce the zero-shot clustering results, using the motif counts from FIMO:
dnalm_bench.task_2_5_single.experiments.task_3_peak_classification.baseline.zero_shot_clustering_baseline.ipynb
This depends on the final-layer embeddings generated for the probed models.
python -m dnalm_bench.task_2_5_single.experiments.task_3_peak_classification.cluster.run_clustering_subset $DART_WORK_DIR/task_3_peak_classification/embeddings/$MODEL_SPECIFIC_NAME.h5 $DART_WORK_DIR/task_3_peak_classification/processed_inputs/peaks_by_cell_label_unique_dataloader_format.tsv $DART_WORK_DIR/task_3_peak_classification/processed_inputs/indices_of_new_peaks_in_old_file.tsv $DART_WORK_DIR/task_3_peak_classification/clustering/$MODEL_SPECIFIC_NAME/
Here, $AB_INITIO_MODEL
is one of probing_head_like
or chrombpnet_like
(ChromBPNet-like).
Extract final-layer embeddings (probing_head_like
only)
python -m dnalm_bench.task_2_5_single.experiments.task_3_peak_classification.extract_embeddings.$AB_INITIO_MODEL
Train ab initio models
python -m dnalm_bench.task_2_5_single.experiments.task_3_peak_classification.baseline.$AB_INITIO_MODEL
Evaluate ab initio models
python -m dnalm_bench.task_2_5_single.experiments.task_3_peak_classification.eval_baseline.$AB_INITIO_MODEL
Extract final-layer embeddings from each model
python -m dnalm_bench.task_2_5_single.experiments.task_3_peak_classification.extract_embeddings.$MODEL
Train probing models
python -m dnalm_bench.task_2_5_single.experiments.task_3_peak_classification.train.$MODEL
Evaluate probing models
python -m dnalm_bench.task_2_5_single.experiments.task_3_peak_classification.eval_probing.$MODEL
Train fine-tuned models
python -m dnalm_bench.task_2_5_single.experiments.task_3_peak_classification.finetune.$MODEL
Evaluate fine-tuned models
python -m dnalm_bench.task_2_5_single.experiments.task_3_peak_classification.eval_finetune.$MODEL
All inputs, intermediate files, and outputs for this task are available for download at syn60581041
.
This task utilizes DNAse-Seq experimental readouts from five cell lines. Input files are available at syn60581050
. This directory should be cloned to $DART_WORK_DIR/task_4_peak_classification/input_data
.
For this task, let $CELL_TYPE
represent one of the following cell lines: GM12878
, H1ESC
, HEPG2
, IMR90
, or K562
.
Extract final-layer embeddings from each model. This should be done for each value of $CATEGORY
in ['peaks', 'nonpeaks', 'idr']
.
python -m dnalm_bench.task_2_5_single.experiments.task_4_chromatin_activity.extract_embeddings.$MODEL $CELL_TYPE $CATEGORY
Train probing models
python -m dnalm_bench.task_2_5_single.experiments.task_4_chromatin_activity.train.$MODEL
Evaluate probing models
python -m dnalm_bench.task_2_5_single.experiments.task_4_chromatin_activity.eval_probing.$MODEL
Train fine-tuned models
python -m dnalm_bench.task_2_5_single.experiments.task_4_chromatin_activity.finetune.$MODEL
Evaluate fine-tuned models
python -m dnalm_bench.task_2_5_single.experiments.task_4_chromatin_activity.eval_finetune.$MODEL
Evaluate ChromBPNet Models
python -m dnalm_bench.task_2_5_single.experiments.task_4_chromatin_activity.eval_ab_initio.chrombpnet_baseline $CELL_TYPE $CHROMBPNET_MODEL_FILENAME
All inputs, intermediate files, and outputs for this task are available for download at syn60581045
.
This task utilizes genomic QTL variants from two studies: African caQTLs (Degorter et al.) and Yoruban dsQTLs (Degner et al.). Input TSV files of variants and experimental effect sizes are available at syn60756043
and syn60756039
. These files should be downloaded to $DART_WORK_DIR/task_5_variant_effect_prediction/input_data/Afr.CaQTLS.tsv
and $DART_WORK_DIR/task_5_variant_effect_prediction/input_data/yoruban.dsqtls.benchmarking.tsv
respectively.
python -m dnalm_bench.task_2_5_single.experiments.task_5_variant_effect_prediction.zero_shot_embeddings.$MODEL $DART_WORK_DIR/task_5_variant_effect_prediction/input_data/Afr.CaQTLS.tsv Afr.CaQTLS $DART_WORK_DIR/refs/GRCh38_no_alt_analysis_set_GCA_000001405.15.fasta
python -m dnalm_bench.task_2_5_single.experiments.task_5_variant_effect_prediction.zero_shot_embeddings.$MODEL $DART_WORK_DIR/task_5_variant_effect_prediction/input_data/yoruban.dsqtls.benchmarking yoruban.dsqtls.benchmarking $DART_WORK_DIR/refs/male.hg19.fa
python -m dnalm_bench.task_2_5_single.experiments.task_5_variant_effect_prediction.zero_shot_likelihoods.$MODEL $DART_WORK_DIR/task_5_variant_effect_prediction/input_data/Afr.CaQTLS.tsv Afr.CaQTLS $DART_WORK_DIR/refs/GRCh38_no_alt_analysis_set_GCA_000001405.15.fasta
python -m dnalm_bench.task_2_5_single.experiments.task_5_variant_effect_prediction.zero_shot_likelihoods.$MODEL $DART_WORK_DIR/task_5_variant_effect_prediction/input_data/yoruban.dsqtls.benchmarking yoruban.dsqtls.benchmarking $DART_WORK_DIR/refs/male.hg19.fa
python -m dnalm_bench.task_2_5_single.experiments.task_5_variant_effect_prediction.probed_log_counts.$MODEL $DART_WORK_DIR/task_5_variant_effect_prediction/input_data/Afr.CaQTLS.tsv $DART_WORK_DIR/task_5_variant_effect_prediction/outputs/probed/$MODEL/Afr.CaQTLS.tsv $DART_WORK_DIR/refs/GRCh38_no_alt_analysis_set_GCA_000001405.15.fasta
python -m dnalm_bench.task_2_5_single.experiments.task_5_variant_effect_prediction.probed_log_counts.$MODEL $DART_WORK_DIR/task_5_variant_effect_prediction/input_data/yoruban.dsqtls.benchmarking $DART_WORK_DIR/task_5_variant_effect_prediction/outputs/probed/$MODEL/yoruban.dsqtls.benchmarking.tsv $DART_WORK_DIR/refs/male.hg19.fa
python -m dnalm_bench.task_2_5_single.experiments.task_5_variant_effect_prediction.finetuned_log_counts.$MODEL $DART_WORK_DIR/task_5_variant_effect_prediction/input_data/Afr.CaQTLS.tsv $DART_WORK_DIR/task_5_variant_effect_prediction/outputs/finetuned/$MODEL/Afr.CaQTLS.tsv $DART_WORK_DIR/refs/GRCh38_no_alt_analysis_set_GCA_000001405.15.fasta
python -m dnalm_bench.task_2_5_single.experiments.task_5_variant_effect_prediction.finetuned_log_counts.$MODEL $DART_WORK_DIR/task_5_variant_effect_prediction/input_data/yoruban.dsqtls.benchmarking $DART_WORK_DIR/task_5_variant_effect_prediction/outputs/fine_tuned/$MODEL/yoruban.dsqtls.benchmarking.tsv $DART_WORK_DIR/refs/male.hg19.fa
Helper functions called in the evaluation notebooks: dnalm_bench.task_2_5_single.experiments.task_5_variant_effect_prediction.variant_tasks.py
Zero Shot Evaluation Notebook: dnalm_bench.task_2_5_single.experiments.task_5_variant_effect_prediction.Zero_Shot_Final.ipynb
Probed Evaluation Notebook: dnalm_bench.task_2_5_single.experiments.task_5_variant_effect_prediction.Probed_Final_Counts.ipynb
Finetuned Evaluation Notebook: dnalm_bench.task_2_5_single.experiments.task_5_variant_effect_prediction.Finetuned_Final_Counts.ipynb