forked from vedderb/bldc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmcpwm_foc.c
4882 lines (4114 loc) · 151 KB
/
mcpwm_foc.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
Copyright 2016 - 2021 Benjamin Vedder [email protected]
This file is part of the VESC firmware.
The VESC firmware is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
The VESC firmware is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#endif
#include "mcpwm_foc.h"
#include "mc_interface.h"
#include "ch.h"
#include "hal.h"
#include "stm32f4xx_conf.h"
#include "digital_filter.h"
#include "utils.h"
#include "ledpwm.h"
#include "terminal.h"
#include "encoder/encoder.h"
#include "commands.h"
#include "timeout.h"
#include "timer.h"
#include <math.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include "virtual_motor.h"
#include "digital_filter.h"
// Private types
typedef struct {
float va;
float vb;
float vc;
float v_mag_filter;
float mod_alpha_filter;
float mod_beta_filter;
float mod_alpha_measured;
float mod_beta_measured;
float mod_alpha_raw;
float mod_beta_raw;
float id_target;
float iq_target;
float max_duty;
float duty_now;
float phase;
float phase_cos;
float phase_sin;
float i_alpha;
float i_beta;
float i_abs;
float i_abs_filter;
float i_bus;
float v_bus;
float v_alpha;
float v_beta;
float mod_d;
float mod_q;
float mod_q_filter;
float id;
float iq;
float id_filter;
float iq_filter;
float vd;
float vq;
float vd_int;
float vq_int;
float speed_rad_s;
uint32_t svm_sector;
bool is_using_phase_filters;
} motor_state_t;
typedef struct {
int sample_num;
float avg_current_tot;
float avg_voltage_tot;
} mc_sample_t;
typedef struct {
void(*fft_bin0_func)(float*, float*, float*);
void(*fft_bin1_func)(float*, float*, float*);
void(*fft_bin2_func)(float*, float*, float*);
int samples;
int table_fact;
float buffer[32];
float buffer_current[32];
bool ready;
int ind;
bool is_samp_n;
float prev_sample;
float angle;
int est_done_cnt;
float observer_zero_time;
int flip_cnt;
} hfi_state_t;
typedef struct {
volatile mc_configuration *m_conf;
mc_state m_state;
mc_control_mode m_control_mode;
motor_state_t m_motor_state;
float m_curr_unbalance;
float m_currents_adc[3];
bool m_phase_override;
float m_phase_now_override;
float m_duty_cycle_set;
float m_id_set;
float m_iq_set;
float m_i_fw_set;
float m_current_off_delay;
float m_openloop_speed;
float m_openloop_phase;
bool m_output_on;
float m_pos_pid_set;
float m_speed_pid_set_rpm;
float m_speed_command_rpm;
float m_phase_now_observer;
float m_phase_now_observer_override;
float m_observer_x1_override;
float m_observer_x2_override;
bool m_phase_observer_override;
float m_phase_now_encoder;
float m_phase_now_encoder_no_index;
float m_observer_x1;
float m_observer_x2;
float m_pll_phase;
float m_pll_speed;
mc_sample_t m_samples;
int m_tachometer;
int m_tachometer_abs;
float m_pos_pid_now;
float m_gamma_now;
bool m_using_encoder;
float m_speed_est_fast;
float m_speed_est_faster;
int m_duty1_next, m_duty2_next, m_duty3_next;
bool m_duty_next_set;
hfi_state_t m_hfi;
int m_hfi_plot_en;
float m_hfi_plot_sample;
// For braking
float m_br_speed_before;
float m_br_vq_before;
int m_br_no_duty_samples;
float m_duty_abs_filtered;
float m_duty_filtered;
bool m_was_control_duty;
float m_duty_i_term;
float m_openloop_angle;
float m_x1_prev;
float m_x2_prev;
float m_phase_before_speed_est;
int m_tacho_step_last;
float m_pid_div_angle_last;
float m_pid_div_angle_accumulator;
float m_min_rpm_hyst_timer;
float m_min_rpm_timer;
bool m_cc_was_hfi;
float m_pos_i_term;
float m_pos_prev_error;
float m_pos_dt_int;
float m_pos_prev_proc;
float m_pos_dt_int_proc;
float m_pos_d_filter;
float m_pos_d_filter_proc;
float m_speed_i_term;
float m_speed_prev_error;
float m_speed_d_filter;
int m_ang_hall_int_prev;
bool m_using_hall;
float m_ang_hall;
float m_ang_hall_rate_limited;
float m_hall_dt_diff_last;
float m_hall_dt_diff_now;
bool m_motor_released;
// Resistance observer
float m_r_est;
float m_r_est_state;
} motor_all_state_t;
// Private variables
static volatile bool m_dccal_done = false;
static volatile float m_last_adc_isr_duration;
static volatile bool m_init_done = false;
static volatile motor_all_state_t m_motor_1;
#ifdef HW_HAS_DUAL_MOTORS
static volatile motor_all_state_t m_motor_2;
#endif
static volatile int m_isr_motor = 0;
// Private functions
void observer_update(float v_alpha, float v_beta, float i_alpha, float i_beta,
float dt, volatile float *x1, volatile float *x2, volatile float *phase, volatile motor_all_state_t *motor);
static void pll_run(float phase, float dt, volatile float *phase_var,
volatile float *speed_var, volatile mc_configuration *conf);
static void control_current(volatile motor_all_state_t *motor, float dt);
static void update_valpha_vbeta(volatile motor_all_state_t *motor, float mod_alpha, float mod_beta);
static void svm(float alpha, float beta, uint32_t PWMFullDutyCycle,
uint32_t* tAout, uint32_t* tBout, uint32_t* tCout, uint32_t *svm_sector);
static void run_pid_control_pos(float dt, volatile motor_all_state_t *motor);
static void run_pid_control_speed(float dt, volatile motor_all_state_t *motor);
static void stop_pwm_hw(volatile motor_all_state_t *motor);
static void start_pwm_hw(volatile motor_all_state_t *motor);
static float correct_encoder(float obs_angle, float enc_angle, float speed, float sl_erpm, volatile motor_all_state_t *motor);
static float correct_hall(float angle, float dt, volatile motor_all_state_t *motor);
static void terminal_tmp(int argc, const char **argv);
static void terminal_plot_hfi(int argc, const char **argv);
static void run_fw(volatile motor_all_state_t *motor, float dt);
static void timer_update(volatile motor_all_state_t *motor, float dt);
static void input_current_offset_measurement( void );
static void hfi_update(volatile motor_all_state_t *motor);
// Threads
static THD_WORKING_AREA(timer_thread_wa, 512);
static THD_FUNCTION(timer_thread, arg);
static volatile bool timer_thd_stop;
static THD_WORKING_AREA(hfi_thread_wa, 512);
static THD_FUNCTION(hfi_thread, arg);
static volatile bool hfi_thd_stop;
static THD_WORKING_AREA(pid_thread_wa, 256);
static THD_FUNCTION(pid_thread, arg);
static volatile bool pid_thd_stop;
// Macros
#ifdef HW_HAS_3_SHUNTS
#define TIMER_UPDATE_DUTY_M1(duty1, duty2, duty3) \
TIM1->CR1 |= TIM_CR1_UDIS; \
TIM1->CCR1 = duty1; \
TIM1->CCR2 = duty2; \
TIM1->CCR3 = duty3; \
TIM1->CR1 &= ~TIM_CR1_UDIS;
#define TIMER_UPDATE_DUTY_M2(duty1, duty2, duty3) \
TIM8->CR1 |= TIM_CR1_UDIS; \
TIM8->CCR1 = duty1; \
TIM8->CCR2 = duty2; \
TIM8->CCR3 = duty3; \
TIM8->CR1 &= ~TIM_CR1_UDIS;
#else
#define TIMER_UPDATE_DUTY_M1(duty1, duty2, duty3) \
TIM1->CR1 |= TIM_CR1_UDIS; \
TIM1->CCR1 = duty1; \
TIM1->CCR2 = duty3; \
TIM1->CCR3 = duty2; \
TIM1->CR1 &= ~TIM_CR1_UDIS;
#define TIMER_UPDATE_DUTY_M2(duty1, duty2, duty3) \
TIM8->CR1 |= TIM_CR1_UDIS; \
TIM8->CCR1 = duty1; \
TIM8->CCR2 = duty3; \
TIM8->CCR3 = duty2; \
TIM8->CR1 &= ~TIM_CR1_UDIS;
#endif
#define TIMER_UPDATE_SAMP(samp) \
TIM2->CCR2 = (samp / 2);
#define TIMER_UPDATE_SAMP_TOP_M1(samp, top) \
TIM1->CR1 |= TIM_CR1_UDIS; \
TIM2->CR1 |= TIM_CR1_UDIS; \
TIM1->ARR = top; \
TIM2->CCR2 = samp / 2; \
TIM1->CR1 &= ~TIM_CR1_UDIS; \
TIM2->CR1 &= ~TIM_CR1_UDIS;
#define TIMER_UPDATE_SAMP_TOP_M2(samp, top) \
TIM8->CR1 |= TIM_CR1_UDIS; \
TIM2->CR1 |= TIM_CR1_UDIS; \
TIM8->ARR = top; \
TIM2->CCR2 = samp / 2; \
TIM8->CR1 &= ~TIM_CR1_UDIS; \
TIM2->CR1 &= ~TIM_CR1_UDIS;
// #define M_MOTOR: For single motor compilation, expands to &m_motor_1.
// For dual motors, expands to &m_motor_1 or _2, depending on is_second_motor.
#ifdef HW_HAS_DUAL_MOTORS
#define M_MOTOR(is_second_motor) (is_second_motor ? &m_motor_2 : &m_motor_1)
#else
#define M_MOTOR(is_second_motor) (((void)is_second_motor), &m_motor_1)
#endif
// This is the noise bit for the PRBS generator
static bool prbsNoiseBit;
bool mcpwm_foc_get_prbs(void) {
return prbsNoiseBit;
}
/**
* @brief prbsGenerator Generates a -1/+1 noise signal from a pseudo-random
* binary sequence with an 11-bit period. Every time this function is
* called, the binary sequences advances one tick.
* C.f. https://blog.kurttomlinson.com/posts/prbs-pseudo-random-binary-sequence
* C.f. https://en.wikipedia.org/wiki/Pseudorandom_binary_sequence
* C.f. https://en.wikipedia.org/wiki/Linear-feedback_shift_register#Example_polynomials_for_maximal_LFSRs
* @return -1 or 1
*/
int32_t prbsGenerator11_increment(void) {
static uint32_t lfsr = 0x01; /* Any nonzero start state less than 2^bits will work. */
const uint32_t taps = (1<< (11-1)) | (1<<(9-1)); // https://en.wikipedia.org/wiki/Linear-feedback_shift_register#Example_polynomials_for_maximal_LFSRs
prbsNoiseBit = lfsr & 0x01; // Get least-significant bit (i.e., the output bit).
lfsr >>= 1; // Shift register
// Only apply toggle mask if output bit is 1.
if (prbsNoiseBit == true) {
lfsr ^= taps; // Apply toggle mask, value has 1 at bits corresponding to taps, 0 elsewhere.
}
return (prbsNoiseBit == true) ? 1 : -1;
}
static void update_hfi_samples(foc_hfi_samples samples, volatile motor_all_state_t *motor) {
utils_sys_lock_cnt();
memset((void*)&motor->m_hfi, 0, sizeof(motor->m_hfi));
switch (samples) {
case HFI_SAMPLES_8:
motor->m_hfi.samples = 8;
motor->m_hfi.table_fact = 4;
motor->m_hfi.fft_bin0_func = utils_fft8_bin0;
motor->m_hfi.fft_bin1_func = utils_fft8_bin1;
motor->m_hfi.fft_bin2_func = utils_fft8_bin2;
break;
case HFI_SAMPLES_16:
motor->m_hfi.samples = 16;
motor->m_hfi.table_fact = 2;
motor->m_hfi.fft_bin0_func = utils_fft16_bin0;
motor->m_hfi.fft_bin1_func = utils_fft16_bin1;
motor->m_hfi.fft_bin2_func = utils_fft16_bin2;
break;
case HFI_SAMPLES_32:
motor->m_hfi.samples = 32;
motor->m_hfi.table_fact = 1;
motor->m_hfi.fft_bin0_func = utils_fft32_bin0;
motor->m_hfi.fft_bin1_func = utils_fft32_bin1;
motor->m_hfi.fft_bin2_func = utils_fft32_bin2;
break;
}
utils_sys_unlock_cnt();
}
static void timer_reinit(int f_zv) {
utils_sys_lock_cnt();
TIM_DeInit(TIM1);
TIM_DeInit(TIM8);
TIM_DeInit(TIM2);
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
TIM_OCInitTypeDef TIM_OCInitStructure;
TIM_BDTRInitTypeDef TIM_BDTRInitStructure;
TIM1->CNT = 0;
TIM2->CNT = 0;
TIM8->CNT = 0;
RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM8, ENABLE);
// Time Base configuration
TIM_TimeBaseStructure.TIM_Prescaler = 0;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_CenterAligned1;
TIM_TimeBaseStructure.TIM_Period = (SYSTEM_CORE_CLOCK / f_zv);
TIM_TimeBaseStructure.TIM_ClockDivision = 0;
TIM_TimeBaseStructure.TIM_RepetitionCounter = 0;
TIM_TimeBaseInit(TIM1, &TIM_TimeBaseStructure);
TIM_TimeBaseInit(TIM8, &TIM_TimeBaseStructure);
// Channel 1, 2 and 3 Configuration in PWM mode
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Enable;
TIM_OCInitStructure.TIM_Pulse = TIM1->ARR / 2;
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;
TIM_OCInitStructure.TIM_OCNPolarity = TIM_OCNPolarity_High;
TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Set;
TIM_OCInitStructure.TIM_OCNIdleState = TIM_OCNIdleState_Set;
TIM_OC1Init(TIM1, &TIM_OCInitStructure);
TIM_OC2Init(TIM1, &TIM_OCInitStructure);
TIM_OC3Init(TIM1, &TIM_OCInitStructure);
TIM_OC4Init(TIM1, &TIM_OCInitStructure);
TIM_OC1PreloadConfig(TIM1, TIM_OCPreload_Enable);
TIM_OC2PreloadConfig(TIM1, TIM_OCPreload_Enable);
TIM_OC3PreloadConfig(TIM1, TIM_OCPreload_Enable);
TIM_OC4PreloadConfig(TIM1, TIM_OCPreload_Enable);
TIM_OC1Init(TIM8, &TIM_OCInitStructure);
TIM_OC2Init(TIM8, &TIM_OCInitStructure);
TIM_OC3Init(TIM8, &TIM_OCInitStructure);
TIM_OC4Init(TIM8, &TIM_OCInitStructure);
TIM_OC1PreloadConfig(TIM8, TIM_OCPreload_Enable);
TIM_OC2PreloadConfig(TIM8, TIM_OCPreload_Enable);
TIM_OC3PreloadConfig(TIM8, TIM_OCPreload_Enable);
TIM_OC4PreloadConfig(TIM8, TIM_OCPreload_Enable);
// Automatic Output enable, Break, dead time and lock configuration
TIM_BDTRInitStructure.TIM_OSSRState = TIM_OSSRState_Enable;
TIM_BDTRInitStructure.TIM_OSSIState = TIM_OSSIState_Enable;
TIM_BDTRInitStructure.TIM_LOCKLevel = TIM_LOCKLevel_OFF;
TIM_BDTRInitStructure.TIM_DeadTime = conf_general_calculate_deadtime(HW_DEAD_TIME_NSEC, SYSTEM_CORE_CLOCK);
TIM_BDTRInitStructure.TIM_AutomaticOutput = TIM_AutomaticOutput_Disable;
#ifdef HW_USE_BRK
// Enable BRK function. Hardware will asynchronously stop any PWM activity upon an
// external fault signal. PWM outputs remain disabled until MCU is reset.
// software will catch the BRK flag to report the fault code
TIM_BDTRInitStructure.TIM_Break = TIM_Break_Enable;
TIM_BDTRInitStructure.TIM_BreakPolarity = TIM_BreakPolarity_Low;
#else
TIM_BDTRInitStructure.TIM_Break = TIM_Break_Disable;
TIM_BDTRInitStructure.TIM_BreakPolarity = TIM_BreakPolarity_High;
#endif
TIM_BDTRConfig(TIM1, &TIM_BDTRInitStructure);
TIM_CCPreloadControl(TIM1, ENABLE);
TIM_ARRPreloadConfig(TIM1, ENABLE);
TIM_BDTRConfig(TIM8, &TIM_BDTRInitStructure);
TIM_CCPreloadControl(TIM8, ENABLE);
TIM_ARRPreloadConfig(TIM8, ENABLE);
// ------------- Timer2 for ADC sampling ------------- //
// Time Base configuration
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);
TIM_TimeBaseStructure.TIM_Prescaler = 0;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseStructure.TIM_Period = 0xFFFF;
TIM_TimeBaseStructure.TIM_ClockDivision = 0;
TIM_TimeBaseStructure.TIM_RepetitionCounter = 0;
TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure);
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_Pulse = 250;
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;
TIM_OCInitStructure.TIM_OCNPolarity = TIM_OCNPolarity_High;
TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Set;
TIM_OCInitStructure.TIM_OCNIdleState = TIM_OCNIdleState_Set;
TIM_OC1Init(TIM2, &TIM_OCInitStructure);
TIM_OC1PreloadConfig(TIM2, TIM_OCPreload_Enable);
TIM_OC2Init(TIM2, &TIM_OCInitStructure);
TIM_OC2PreloadConfig(TIM2, TIM_OCPreload_Enable);
TIM_OC3Init(TIM2, &TIM_OCInitStructure);
TIM_OC3PreloadConfig(TIM2, TIM_OCPreload_Enable);
TIM_ARRPreloadConfig(TIM2, ENABLE);
TIM_CCPreloadControl(TIM2, ENABLE);
// PWM outputs have to be enabled in order to trigger ADC on CCx
TIM_CtrlPWMOutputs(TIM2, ENABLE);
// TIM1 Master and TIM8 slave
#if defined HW_HAS_DUAL_MOTORS || defined HW_HAS_DUAL_PARALLEL
// See: https://www.cnblogs.com/shangdawei/p/4758988.html
TIM_SelectOutputTrigger(TIM1, TIM_TRGOSource_Enable);
TIM_SelectMasterSlaveMode(TIM1, TIM_MasterSlaveMode_Enable);
TIM_SelectInputTrigger(TIM8, TIM_TS_ITR0);
TIM_SelectSlaveMode(TIM8, TIM_SlaveMode_Trigger);
TIM_SelectOutputTrigger(TIM8, TIM_TRGOSource_Enable);
TIM_SelectOutputTrigger(TIM8, TIM_TRGOSource_Update);
TIM_SelectInputTrigger(TIM2, TIM_TS_ITR1);
TIM_SelectSlaveMode(TIM2, TIM_SlaveMode_Reset);
#else
TIM_SelectOutputTrigger(TIM1, TIM_TRGOSource_Update);
TIM_SelectMasterSlaveMode(TIM1, TIM_MasterSlaveMode_Enable);
TIM_SelectInputTrigger(TIM2, TIM_TS_ITR0);
TIM_SelectSlaveMode(TIM2, TIM_SlaveMode_Reset);
#endif
// Enable TIM1 and TIM2
#ifdef HW_HAS_DUAL_MOTORS
TIM8->CNT = TIM1->ARR;
#else
TIM8->CNT = 0;
#endif
TIM1->CNT = 0;
TIM_Cmd(TIM1, ENABLE);
TIM_Cmd(TIM2, ENABLE);
// Prevent all low side FETs from switching on
stop_pwm_hw(&m_motor_1);
#ifdef HW_HAS_DUAL_MOTORS
stop_pwm_hw(&m_motor_2);
#endif
// Main Output Enable
TIM_CtrlPWMOutputs(TIM1, ENABLE);
TIM_CtrlPWMOutputs(TIM8, ENABLE);
// Sample intervals
TIMER_UPDATE_SAMP(MCPWM_FOC_CURRENT_SAMP_OFFSET);
// Enable CC2 interrupt, which will be fired in V0 and V7
TIM_ITConfig(TIM2, TIM_IT_CC2, ENABLE);
utils_sys_unlock_cnt();
nvicEnableVector(TIM2_IRQn, 6);
}
void mcpwm_foc_init(volatile mc_configuration *conf_m1, volatile mc_configuration *conf_m2) {
utils_sys_lock_cnt();
#ifndef HW_HAS_DUAL_MOTORS
(void)conf_m2;
#endif
m_init_done = false;
// Initialize variables
memset((void*)&m_motor_1, 0, sizeof(motor_all_state_t));
m_isr_motor = 0;
m_motor_1.m_conf = conf_m1;
m_motor_1.m_state = MC_STATE_OFF;
m_motor_1.m_control_mode = CONTROL_MODE_NONE;
m_motor_1.m_hall_dt_diff_last = 1.0;
update_hfi_samples(m_motor_1.m_conf->foc_hfi_samples, &m_motor_1);
#ifdef HW_HAS_DUAL_MOTORS
memset((void*)&m_motor_2, 0, sizeof(motor_all_state_t));
m_motor_2.m_conf = conf_m2;
m_motor_2.m_state = MC_STATE_OFF;
m_motor_2.m_control_mode = CONTROL_MODE_NONE;
m_motor_2.m_hall_dt_diff_last = 1.0;
update_hfi_samples(m_motor_2.m_conf->foc_hfi_samples, &m_motor_2);
#endif
virtual_motor_init(conf_m1);
TIM_DeInit(TIM1);
TIM_DeInit(TIM2);
TIM_DeInit(TIM8);
TIM1->CNT = 0;
TIM2->CNT = 0;
TIM8->CNT = 0;
// ADC
ADC_CommonInitTypeDef ADC_CommonInitStructure;
DMA_InitTypeDef DMA_InitStructure;
ADC_InitTypeDef ADC_InitStructure;
// Clock
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_DMA2 | RCC_AHB1Periph_GPIOA | RCC_AHB1Periph_GPIOC, ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1 | RCC_APB2Periph_ADC2 | RCC_APB2Periph_ADC3, ENABLE);
dmaStreamAllocate(STM32_DMA_STREAM(STM32_DMA_STREAM_ID(2, 4)),
5,
(stm32_dmaisr_t)mcpwm_foc_adc_int_handler,
(void *)0);
// DMA for the ADC
DMA_InitStructure.DMA_Channel = DMA_Channel_0;
DMA_InitStructure.DMA_Memory0BaseAddr = (uint32_t)&ADC_Value;
DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)&ADC->CDR;
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralToMemory;
DMA_InitStructure.DMA_BufferSize = HW_ADC_CHANNELS;
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord;
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord;
DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;
DMA_InitStructure.DMA_Priority = DMA_Priority_High;
DMA_InitStructure.DMA_FIFOMode = DMA_FIFOMode_Disable;
DMA_InitStructure.DMA_FIFOThreshold = DMA_FIFOThreshold_1QuarterFull;
DMA_InitStructure.DMA_MemoryBurst = DMA_MemoryBurst_Single;
DMA_InitStructure.DMA_PeripheralBurst = DMA_PeripheralBurst_Single;
DMA_Init(DMA2_Stream4, &DMA_InitStructure);
DMA_Cmd(DMA2_Stream4, ENABLE);
DMA_ITConfig(DMA2_Stream4, DMA_IT_TC, ENABLE);
// ADC Common Init
// Note that the ADC is running at 42MHz, which is higher than the
// specified 36MHz in the data sheet, but it works.
ADC_CommonInitStructure.ADC_Mode = ADC_TripleMode_RegSimult;
ADC_CommonInitStructure.ADC_Prescaler = ADC_Prescaler_Div2;
ADC_CommonInitStructure.ADC_DMAAccessMode = ADC_DMAAccessMode_1;
ADC_CommonInitStructure.ADC_TwoSamplingDelay = ADC_TwoSamplingDelay_5Cycles;
ADC_CommonInit(&ADC_CommonInitStructure);
// Channel-specific settings
ADC_InitStructure.ADC_Resolution = ADC_Resolution_12b;
ADC_InitStructure.ADC_ScanConvMode = ENABLE;
ADC_InitStructure.ADC_ContinuousConvMode = DISABLE;
ADC_InitStructure.ADC_ExternalTrigConvEdge = ADC_ExternalTrigConvEdge_Falling;
ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_T2_CC2;
ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;
ADC_InitStructure.ADC_NbrOfConversion = HW_ADC_NBR_CONV;
ADC_Init(ADC1, &ADC_InitStructure);
ADC_InitStructure.ADC_ExternalTrigConvEdge = ADC_ExternalTrigConvEdge_None;
ADC_InitStructure.ADC_ExternalTrigConv = 0;
ADC_Init(ADC2, &ADC_InitStructure);
ADC_Init(ADC3, &ADC_InitStructure);
ADC_TempSensorVrefintCmd(ENABLE);
ADC_MultiModeDMARequestAfterLastTransferCmd(ENABLE);
hw_setup_adc_channels();
ADC_Cmd(ADC1, ENABLE);
ADC_Cmd(ADC2, ENABLE);
ADC_Cmd(ADC3, ENABLE);
timer_reinit((int)m_motor_1.m_conf->foc_f_zv);
stop_pwm_hw(&m_motor_1);
#ifdef HW_HAS_DUAL_MOTORS
stop_pwm_hw(&m_motor_2);
#endif
// Sample intervals. For now they are fixed with voltage samples in the center of V7
// and current samples in the center of V0
TIMER_UPDATE_SAMP(MCPWM_FOC_CURRENT_SAMP_OFFSET);
// Enable CC2 interrupt, which will be fired in V0 and V7
TIM_ITConfig(TIM2, TIM_IT_CC2, ENABLE);
nvicEnableVector(TIM2_IRQn, 6);
utils_sys_unlock_cnt();
CURRENT_FILTER_ON();
ENABLE_GATE();
DCCAL_OFF();
if (m_motor_1.m_conf->foc_offsets_cal_on_boot) {
systime_t cal_start_time = chVTGetSystemTimeX();
float cal_start_timeout = 10.0;
// Wait for input voltage to rise above minimum voltage
while (mc_interface_get_input_voltage_filtered() < m_motor_1.m_conf->l_min_vin) {
chThdSleepMilliseconds(1);
if (UTILS_AGE_S(cal_start_time) >= cal_start_timeout) {
m_dccal_done = true;
break;
}
}
// Wait for input voltage to settle
if (!m_dccal_done) {
float v_in_last = mc_interface_get_input_voltage_filtered();
systime_t v_in_stable_time = chVTGetSystemTimeX();
while (UTILS_AGE_S(v_in_stable_time) < 2.0) {
chThdSleepMilliseconds(1);
float v_in_now = mc_interface_get_input_voltage_filtered();
if (fabsf(v_in_now - v_in_last) > 1.5) {
v_in_last = v_in_now;
v_in_stable_time = chVTGetSystemTimeX();
}
if (UTILS_AGE_S(cal_start_time) >= cal_start_timeout) {
m_dccal_done = true;
break;
}
}
}
if (!m_dccal_done) {
for (int i = 0;i < 3;i++) {
m_motor_1.m_conf->foc_offsets_voltage[i] = 0.0;
m_motor_1.m_conf->foc_offsets_voltage_undriven[i] = 0.0;
m_motor_1.m_conf->foc_offsets_current[i] = 2048;
#ifdef HW_HAS_DUAL_MOTORS
m_motor_2.m_conf->foc_offsets_voltage[i] = 0.0;
m_motor_2.m_conf->foc_offsets_voltage_undriven[i] = 0.0;
m_motor_2.m_conf->foc_offsets_current[i] = 2048;
#endif
}
mcpwm_foc_dc_cal(false);
}
} else {
m_dccal_done = true;
}
// Start threads
timer_thd_stop = false;
chThdCreateStatic(timer_thread_wa, sizeof(timer_thread_wa), NORMALPRIO, timer_thread, NULL);
hfi_thd_stop = false;
chThdCreateStatic(hfi_thread_wa, sizeof(hfi_thread_wa), NORMALPRIO, hfi_thread, NULL);
pid_thd_stop = false;
chThdCreateStatic(pid_thread_wa, sizeof(pid_thread_wa), NORMALPRIO, pid_thread, NULL);
// Check if the system has resumed from IWDG reset
if (timeout_had_IWDG_reset()) {
mc_interface_fault_stop(FAULT_CODE_BOOTING_FROM_WATCHDOG_RESET, false, false);
}
terminal_register_command_callback(
"foc_tmp",
"FOC Test Print",
0,
terminal_tmp);
terminal_register_command_callback(
"foc_plot_hfi_en",
"Enable HFI plotting. 0: off, 1: DFT, 2: Raw",
"[en]",
terminal_plot_hfi);
m_init_done = true;
}
void mcpwm_foc_deinit(void) {
if (!m_init_done) {
return;
}
m_init_done = false;
timer_thd_stop = true;
while (timer_thd_stop) {
chThdSleepMilliseconds(1);
}
hfi_thd_stop = true;
while (hfi_thd_stop) {
chThdSleepMilliseconds(1);
}
pid_thd_stop = true;
while (pid_thd_stop) {
chThdSleepMilliseconds(1);
}
TIM_DeInit(TIM1);
TIM_DeInit(TIM2);
TIM_DeInit(TIM8);
ADC_DeInit();
DMA_DeInit(DMA2_Stream4);
nvicDisableVector(ADC_IRQn);
dmaStreamRelease(STM32_DMA_STREAM(STM32_DMA_STREAM_ID(2, 4)));
}
static volatile motor_all_state_t *motor_now(void) {
#ifdef HW_HAS_DUAL_MOTORS
return mc_interface_motor_now() == 1 ? &m_motor_1 : &m_motor_2;
#else
return &m_motor_1;
#endif
}
bool mcpwm_foc_init_done(void) {
return m_init_done;
}
void mcpwm_foc_set_configuration(volatile mc_configuration *configuration) {
motor_now()->m_conf = configuration;
// Below we check if anything in the configuration changed that requires stopping the motor.
uint32_t top = SYSTEM_CORE_CLOCK / (int)configuration->foc_f_zv;
if (TIM1->ARR != top) {
#ifdef HW_HAS_DUAL_MOTORS
m_motor_1.m_control_mode = CONTROL_MODE_NONE;
m_motor_1.m_state = MC_STATE_OFF;
stop_pwm_hw(&m_motor_1);
m_motor_2.m_control_mode = CONTROL_MODE_NONE;
m_motor_2.m_state = MC_STATE_OFF;
stop_pwm_hw(&m_motor_2);
timer_reinit((int)configuration->foc_f_zv);
#else
motor_now()->m_control_mode = CONTROL_MODE_NONE;
motor_now()->m_state = MC_STATE_OFF;
stop_pwm_hw(motor_now());
TIMER_UPDATE_SAMP_TOP_M1(MCPWM_FOC_CURRENT_SAMP_OFFSET, top);
#ifdef HW_HAS_DUAL_PARALLEL
TIMER_UPDATE_SAMP_TOP_M2(MCPWM_FOC_CURRENT_SAMP_OFFSET, top);
#endif
#endif
}
if (((1 << motor_now()->m_conf->foc_hfi_samples) * 8) != motor_now()->m_hfi.samples) {
motor_now()->m_control_mode = CONTROL_MODE_NONE;
motor_now()->m_state = MC_STATE_OFF;
stop_pwm_hw(motor_now());
update_hfi_samples(motor_now()->m_conf->foc_hfi_samples, motor_now());
}
virtual_motor_set_configuration(configuration);
}
mc_state mcpwm_foc_get_state(void) {
return motor_now()->m_state;
}
bool mcpwm_foc_is_dccal_done(void) {
return m_dccal_done;
}
/**
* Get the current motor used in the mcpwm ISR
*
* @return
* 0: Not in ISR
* 1: Motor 1
* 2: Motor 2
*/
int mcpwm_foc_isr_motor(void) {
return m_isr_motor;
}
/**
* Switch off all FETs.
*/
void mcpwm_foc_stop_pwm(bool is_second_motor) {
volatile motor_all_state_t *motor = M_MOTOR(is_second_motor);
motor->m_control_mode = CONTROL_MODE_NONE;
motor->m_state = MC_STATE_OFF;
stop_pwm_hw(motor);
}
/**
* Use duty cycle control. Absolute values less than MCPWM_MIN_DUTY_CYCLE will
* stop the motor.
*
* @param dutyCycle
* The duty cycle to use.
*/
void mcpwm_foc_set_duty(float dutyCycle) {
motor_now()->m_control_mode = CONTROL_MODE_DUTY;
motor_now()->m_duty_cycle_set = dutyCycle;
if (motor_now()->m_state != MC_STATE_RUNNING) {
motor_now()->m_motor_released = false;
motor_now()->m_state = MC_STATE_RUNNING;
}
}
/**
* Use duty cycle control. Absolute values less than MCPWM_MIN_DUTY_CYCLE will
* stop the motor.
*
* WARNING: This function does not use ramping. A too large step with a large motor
* can destroy hardware.
*
* @param dutyCycle
* The duty cycle to use.
*/
void mcpwm_foc_set_duty_noramp(float dutyCycle) {
// TODO: Actually do this without ramping
mcpwm_foc_set_duty(dutyCycle);
}
/**
* Use PID rpm control. Note that this value has to be multiplied by half of
* the number of motor poles.
*
* @param rpm
* The electrical RPM goal value to use.
*/
void mcpwm_foc_set_pid_speed(float rpm) {
if (motor_now()->m_conf->s_pid_ramp_erpms_s > 0.0 ) {
if (motor_now()->m_control_mode != CONTROL_MODE_SPEED ||
motor_now()->m_state != MC_STATE_RUNNING) {
motor_now()->m_speed_pid_set_rpm = mcpwm_foc_get_rpm();
}
motor_now()->m_speed_command_rpm = rpm;
} else {
motor_now()->m_speed_pid_set_rpm = rpm;
}
motor_now()->m_control_mode = CONTROL_MODE_SPEED;
if (motor_now()->m_state != MC_STATE_RUNNING) {
motor_now()->m_motor_released = false;
motor_now()->m_state = MC_STATE_RUNNING;
}
}
/**
* Use PID position control. Note that this only works when encoder support
* is enabled.
*
* @param pos
* The desired position of the motor in degrees.
*/
void mcpwm_foc_set_pid_pos(float pos) {
motor_now()->m_control_mode = CONTROL_MODE_POS;
motor_now()->m_pos_pid_set = pos;
if (motor_now()->m_state != MC_STATE_RUNNING) {
motor_now()->m_motor_released = false;
motor_now()->m_state = MC_STATE_RUNNING;
}
}
/**
* Use current control and specify a goal current to use. The sign determines
* the direction of the torque. Absolute values less than
* conf->cc_min_current will release the motor.
*
* @param current
* The current to use.
*/
void mcpwm_foc_set_current(float current) {
motor_now()->m_control_mode = CONTROL_MODE_CURRENT;
motor_now()->m_iq_set = current;
motor_now()->m_id_set = 0;
if (fabsf(current) < motor_now()->m_conf->cc_min_current) {
return;
}
if (motor_now()->m_state != MC_STATE_RUNNING) {
motor_now()->m_motor_released = false;
motor_now()->m_state = MC_STATE_RUNNING;
}
}
void mcpwm_foc_release_motor(void) {
motor_now()->m_control_mode = CONTROL_MODE_CURRENT;
motor_now()->m_iq_set = 0.0;
motor_now()->m_id_set = 0.0;
motor_now()->m_motor_released = true;
}
/**
* Brake the motor with a desired current. Absolute values less than
* conf->cc_min_current will release the motor.
*
* @param current
* The current to use. Positive and negative values give the same effect.
*/
void mcpwm_foc_set_brake_current(float current) {
motor_now()->m_control_mode = CONTROL_MODE_CURRENT_BRAKE;
motor_now()->m_iq_set = current;
if (fabsf(current) < motor_now()->m_conf->cc_min_current) {
return;
}
if (motor_now()->m_state != MC_STATE_RUNNING) {
motor_now()->m_motor_released = false;
motor_now()->m_state = MC_STATE_RUNNING;
}
}
/**
* Apply a fixed static current vector in open loop to emulate an electric
* handbrake.
*
* @param current
* The brake current to use.
*/
void mcpwm_foc_set_handbrake(float current) {
motor_now()->m_control_mode = CONTROL_MODE_HANDBRAKE;
motor_now()->m_iq_set = current;
if (fabsf(current) < motor_now()->m_conf->cc_min_current) {
return;
}
if (motor_now()->m_state != MC_STATE_RUNNING) {
motor_now()->m_motor_released = false;
motor_now()->m_state = MC_STATE_RUNNING;
}
}
/**
* Produce an openloop rotating current.
*
* @param current
* The current to use.