forked from RitaRamo/smallcap
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
180 lines (144 loc) · 8.01 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import pandas as pd
import numpy as np
import os
import argparse
os.environ["WANDB_DISABLED"] = "true"
from transformers.models.auto.configuration_auto import AutoConfig
from transformers import AutoTokenizer, CLIPFeatureExtractor, AutoModel, AutoModelForCausalLM
from transformers import Seq2SeqTrainer, default_data_collator, Seq2SeqTrainingArguments
from transformers import VisionEncoderDecoderModel, CLIPModel, CLIPVisionModel,EncoderDecoderModel
from src.vision_encoder_decoder import SmallCap, SmallCapConfig
from src.gpt2 import ThisGPT2Config, ThisGPT2LMHeadModel
from src.xglm import ThisXGLMConfig, ThisXGLMForCausalLM
from src.opt import ThisOPTConfig, ThisOPTForCausalLM
from src.utils import *
# for attention with 28M params, we devide the attention dimensions by 1
# for attention with 14M params, we devide the attention dimensions by 2, etc.
PARAMS2REDUCE_FACTOR = {28: 1, 14: 2, 7: 4, 3.5: 8, 1.75: 16}
PAD_TOKEN = '!'
EOS_TOKEN = '.'
CAPTION_LENGTH = 25
def get_model_and_auxiliaries(args):
# register model types
if "xglm" in args.decoder_name:
AutoConfig.register("this_xglm", ThisXGLMConfig)
AutoModel.register(ThisXGLMConfig, ThisXGLMForCausalLM)
AutoModelForCausalLM.register(ThisXGLMConfig, ThisXGLMForCausalLM)
elif "opt" in args.decoder_name:
AutoConfig.register("this_opt", ThisOPTConfig)
AutoModel.register(ThisOPTConfig, ThisOPTForCausalLM)
AutoModelForCausalLM.register(ThisOPTConfig, ThisOPTForCausalLM)
else:
AutoConfig.register("this_gpt2", ThisGPT2Config)
AutoModel.register(ThisGPT2Config, ThisGPT2LMHeadModel)
AutoModelForCausalLM.register(ThisGPT2Config, ThisGPT2LMHeadModel)
AutoConfig.register("smallcap", SmallCapConfig)
AutoModel.register(SmallCapConfig, SmallCap)
# create and configure model
cross_attention_reduce_factor = PARAMS2REDUCE_FACTOR[args.attention_size]
feature_extractor = CLIPFeatureExtractor.from_pretrained(args.encoder_name)
tokenizer = AutoTokenizer.from_pretrained(args.decoder_name)
tokenizer.pad_token = PAD_TOKEN
tokenizer.eos_token = EOS_TOKEN
model = SmallCap.from_encoder_decoder_pretrained(args.encoder_name, args.decoder_name, cross_attention_reduce_factor=cross_attention_reduce_factor)
model.config.vocab_size = model.config.decoder.vocab_size
model.config.decoder_start_token_id = None
model.config.pad_token_id = tokenizer.pad_token_id
model.config.eos_token_id = tokenizer.eos_token_id
if not args.disable_rag:
model.config.k = args.k
model.config.retrieval_encoder = args.retrieval_encoder
model.config.max_length = CAPTION_LENGTH
model.config.rag = not args.disable_rag
#print("model",model)
#print(stop)
# freeze parameters
for param in model.encoder.parameters():
param.requires_grad = False
if "xglm" in args.decoder_name or "opt" in args.decoder_name:
if not args.train_decoder:
for name, param in model.decoder.named_parameters():
if 'encoder_attn' not in name:
param.requires_grad = False
else:
if not args.train_decoder:
for name, param in model.decoder.named_parameters():
if 'crossattention' not in name:
param.requires_grad = False
# count trainable parameters
model_parameters = filter(lambda p: p.requires_grad, model.parameters())
num_trainable_params = sum([np.prod(p.size()) for p in model_parameters])
print('Training a model with {} trainable parameters.'.format(num_trainable_params))
return model, tokenizer, feature_extractor
def get_data(tokenizer, max_length, args):
data = load_data_for_training(args.annotations_path, args.captions_path)
train_df = pd.DataFrame(data['train'])
if args.ablation_visual:
train_dataset = AblationFeaturesDataset(
df=train_df,
features_path=os.path.join(args.features_dir,'train.hdf5'),
tokenizer=tokenizer,
rag=not args.disable_rag,
template_path=args.template_path,
k=args.k,
max_caption_length=max_length)
else:
train_dataset = TrainDataset(
df=train_df,
features_path=os.path.join(args.features_dir,'train.hdf5'),
tokenizer=tokenizer,
rag=not args.disable_rag,
template_path=args.template_path,
k=args.k,
max_caption_length=max_length)
return train_dataset
def main(args):
model, tokenizer, feature_extractor = get_model_and_auxiliaries(args)
train_dataset = get_data(tokenizer, model.config.max_length, args)
model_type = 'norag' if args.disable_rag else 'rag'
if args.ablation_visual:
output_dir = '{}_{}M_{}_ablation'.format(model_type, args.attention_size, args.decoder_name)
else:
output_dir = '{}_{}M_{}'.format(model_type, args.attention_size, args.decoder_name)
output_dir = os.path.join(args.experiments_dir, output_dir)
training_args = Seq2SeqTrainingArguments(
num_train_epochs=args.n_epochs,
per_device_train_batch_size=args.batch_size,
gradient_accumulation_steps=args.gradient_steps,
learning_rate = args.lr,
fp16=True,
save_strategy="epoch",
save_total_limit=args.n_epochs,
logging_strategy="epoch",
output_dir=output_dir,
overwrite_output_dir=True,
)
trainer = Seq2SeqTrainer(
model=model,
args=training_args,
data_collator=default_data_collator,
train_dataset=train_dataset,
tokenizer=feature_extractor,
)
trainer.train()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Model Training')
parser.add_argument("--features_dir", type=str, default="features/", help="Directory where cached input image features are stored")
parser.add_argument("--annotations_path", type=str, default="data/dataset_coco.json", help="JSON file with annotations in Karpathy splits")
parser.add_argument("--experiments_dir", type=str, default="experiments/", help="Directory where trained models will be saved")
parser.add_argument("--encoder_name", type=str, default="openai/clip-vit-base-patch32", help="Encoder name as found of HuggingFace or stored locally")
parser.add_argument("--decoder_name", type=str, default="gpt2", help="Decoder name as found of HuggingFace or stored locally")
parser.add_argument("--attention_size", type=float, default=7, help="Number of parameters in the cross attention {28, 14, 7, 3.5, 1.75}")
parser.add_argument("--train_decoder", action="store_true", default=False, help="Whether to train the decoder in addition to the attention")
parser.add_argument("--disable_rag", action="store_true", default=False, help="Disable retrieval augmentation")
parser.add_argument("--k", type=int, default=4, help="Number of retrieved captions to use in prefix")
parser.add_argument("--retrieval_encoder", type=str, default="RN50x64", help="Visual encoder used for retieving captions")
parser.add_argument("--captions_path", type=str, default="data/retrieved_caps_resnet50x64.json", help="JSON file with retrieved captions")
parser.add_argument("--template_path", type=str, default="src/template.txt", help="TXT file with template")
parser.add_argument("--n_epochs", type=int, default=10, help="Number of training epochs")
parser.add_argument("--lr", type=float, default=1e-4, help="Learning rate")
parser.add_argument("--batch_size", type=int, default=64, help="Batch size")
parser.add_argument("--gradient_steps", type=int, default=1, help="Number of gradient accumulation steps")
parser.add_argument("--ablation_visual", action="store_true", default=False, help="Whether to blank visual features")
args = parser.parse_args()
main(args)