From 8e42df2259e2cf9782c367589db4434a9a739051 Mon Sep 17 00:00:00 2001 From: kmlefran Date: Tue, 23 Jan 2024 08:46:32 -0500 Subject: [PATCH] Add test for wrong node type --- pyproject.toml | 5 +- tests/data/test_aimqbparameters.py | 3 + .../aimall.gaussianwfx/default/aiida.sum | 830 ++++++++++++++++++ .../default/aiida_atomicfiles/h1.inp | 11 + .../default/aiida_atomicfiles/h1.int | 492 +++++++++++ .../default/aiida_atomicfiles/h2.inp | 11 + .../default/aiida_atomicfiles/h2.int | 492 +++++++++++ tests/parsers/test_aimqbbaseparser.py | 28 +- 8 files changed, 1869 insertions(+), 3 deletions(-) create mode 100644 tests/parsers/fixtures/aimall.gaussianwfx/default/aiida.sum create mode 100644 tests/parsers/fixtures/aimall.gaussianwfx/default/aiida_atomicfiles/h1.inp create mode 100644 tests/parsers/fixtures/aimall.gaussianwfx/default/aiida_atomicfiles/h1.int create mode 100644 tests/parsers/fixtures/aimall.gaussianwfx/default/aiida_atomicfiles/h2.inp create mode 100644 tests/parsers/fixtures/aimall.gaussianwfx/default/aiida_atomicfiles/h2.int diff --git a/pyproject.toml b/pyproject.toml index fa92788..7d1fe11 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -29,7 +29,9 @@ dependencies = [ "ase", "cclib", "aiida-dataframe", - "multiprocess" + "multiprocess", + "subproptools", + "group_decomposition" ] [project.urls] @@ -52,6 +54,7 @@ testing = [ "cclib", "aiida-dataframe", "multiprocess", + "subproptools", "pymatgen", "coveralls" ] diff --git a/tests/data/test_aimqbparameters.py b/tests/data/test_aimqbparameters.py index e77cfd5..545d2e2 100644 --- a/tests/data/test_aimqbparameters.py +++ b/tests/data/test_aimqbparameters.py @@ -22,6 +22,9 @@ def test_data(): AimqbParameters = DataFactory("aimall.aimqb") parameters = AimqbParameters({"naat": 2, "nproc": 2, "atlaprhocps": True}) assert isinstance(parameters, AimqbParameters) + assert isinstance( + parameters.__str__(), str # pylint:disable=unnecessary-dunder-call + ) # pylint:disable=unnecessary-dunder-call # file = SinglefileData( # file=os.path.join(TEST_DIR, "input_files", "water_wb97xd_augccpvtz_qtaim.wfx") # ) diff --git a/tests/parsers/fixtures/aimall.gaussianwfx/default/aiida.sum b/tests/parsers/fixtures/aimall.gaussianwfx/default/aiida.sum new file mode 100644 index 0000000..17434b2 --- /dev/null +++ b/tests/parsers/fixtures/aimall.gaussianwfx/default/aiida.sum @@ -0,0 +1,830 @@ +AIMSum (Version 19.10.12, Professional) +Copyright (c) 1997-2019 by Todd A. Keith +AIMSum is a component of the AIMAll package ( http://aim.tkgristmill.com ) + +TP: 64-bit Mac OS X + +Much of the Quantum Theory of Atoms in Molecules (QTAIM) is described in the book: + "Atoms in Molecules - A Quantum Theory" + R.F.W. Bader, Oxford University Press, Oxford, 1990 + +For additional references see: http://aim.tkgristmill.com/references.html + +Wfx File: /Users/chemlab/Desktop/junkCalculations/h2_opt.wfx +Sum File: /Users/chemlab/Desktop/junkCalculations/h2_opt.sum + +SumViz File: /Users/chemlab/Desktop/junkCalculations/h2_opt.sumviz + +Wfx Title: Title Card Required + +Total memory allocated for AIMSum = 0.241 Megabytes + +Atomic units (a.u.) used throughout, except where stated otherwise + +Model: Restricted SCF + +Restricted, closed-shell, single-determinant wavefunction. + Number of electrons (from MO Occs) = 2.0000000000 + Number of Alpha electrons (from MO Occs) = 1.0000000000 + Number of Beta electrons (from MO Occs) = 1.0000000000 + Number of electron pairs (N*(N-1)/2) = 1.0000000000 + Number of electron pairs (from Muller 2EDM) = 1.0000000000 + +Nuclear Charges and Cartesian Coordinates: +------------------------------------------------------------------------------- +Atom Charge X Y Z +------------------------------------------------------------------------------- +H1 1.0 0.0000000000E+00 0.0000000000E+00 6.9430707596E-01 +H2 1.0 8.5028093820E-17 0.0000000000E+00 -6.9430707596E-01 + +Some Atomic Properties: +---------------------- + q(A) = Net Charge of Atom A + L(A) = Lagrangian of Atom A = -(1/4) Times Atomic Integral of the Laplacian of the Electron Density + K(A) = Electronic Kinetic Energy of Atom A (Hamiltonian Form) + K_Scaled(A) = K(A) * E(Mol)/K(Mol) = Approximation to Virial-Based Total Energy of Atom A. + |Mu_Intra(A)| = Magnitude of Intraatomic Dipole Moment of Atom A +-------------------------------------------------------------------------------------------------- +Atom A q(A) L(A) K(A) K_Scaled(A) |Mu_Intra(A)| +-------------------------------------------------------------------------------------------------- +H1 -2.6599999980E-08 8.2259696833E-09 5.6044277123E-01 -5.6147993334E-01 1.2778860205E-01 +H2 -2.6599999980E-08 8.2259730849E-09 5.6044277123E-01 -5.6147993334E-01 1.2778860205E-01 +-------------------------------------------------------------------------------------------------- +Total -5.3199999961E-08 1.6451942768E-08 1.1208855425E+00 -1.1229598667E+00 + +1st Largest |L(A)| = 8.2259730849E-09, atom H2 +2nd Largest |L(A)| = 8.2259696833E-09, atom H1 + +Molecular charge q(Mol) from the wfx file: 0.0000000000E+00 +Molecular energy E(Mol) from the wfx file: -1.1229598375E+00 +Molecular virial ratio (-V(Mol)/T(Mol)) from the wfx file: 2.0018506120E+00 +Full molecular virial ratio ((-V(Mol)+W(Mol))/T(Mol)) from the wfx file: 2.0018506701E+00 +Note. K_Scaled(A) = (1+V(Mol)/T(Mol))*K(A) = (E(Mol)/T(Mol))*K(A) + Only use K_Scaled(A) data with caution. + +N_AIMInt(SumA) = 2.000000 +N_Analytic(Mol) = 2.000000 + +G_AIMInt(SumA) = 1.120886 +G_Analytic(Mol) = 1.120886 + +K_AIMInt(SumA) = 1.120886 +K_Analytic(Mol) = 1.120886 + +L_AIMInt(SumA) = 0.000000 +L_Analytic(Mol) = 0.000000 + +VenT_AIMInt(SumA) = -3.618607 +VenT_Analytic(Mol) = -3.618607 + +Some Information About the Atomic Calculations: +---------------------------------------------- + Time(sec) = "Elapsed User Time", in Seconds, for Atom A by AIMInt and, if used, by TWOe + NProc = Number of Processors Used for AIMInt Job + BIM = Basin Integration Method + OAQ = Angular Quadrature Outside of Beta Sphere + ORQ = Multiple of Default for Radial Quadrature Outside of Beta Sphere + IAQ = Multiple of Default for Angular Quadrature Inside of Beta Sphere + IRQ = Multiple of Default for Radial Quadrature Inside of Beta Sphere + MIR = Maximum Integration Radius +------------------------------------------------------------------------------------------------------ +Atom A Time(sec) NProc BIM OAQ ORQ IAQ IRQ MIR +------------------------------------------------------------------------------------------------------ +H1 1 1 Proaim(5) 1800(GS4) 1.00 1.00 1.00 13.00 +H2 1 1 Proaim(5) 1800(GS4) 1.00 1.00 1.00 13.00 +------------------------------------------------------------------------------------------------------ +Total 2 +Note: Total wall clock time is less than total of atomic times if more than one atom + was calculated at a time + +Electron Density Critical Point Analysis of Molecular Structure: +--------------------------------------------------------------- + NACP = Nuclear Attractor Critical Point + NNACP = Non-Nuclear Attractor Critical Point + BCP = Bond Critical Point + RCP = Ring Critical Point + CCP = Cage Critical Point + Rho = Electron Density + GradRho = Gradient of Electron Density + HessRho_EigVals = Eigenvalues of the Hessian of Rho, Ascending Order + HessRho_EigVecs = Eigenvectors of the Hessian of Rho + DelSqRho = Laplacian of Rho = Trace of Hessian of Rho + Bond Ellipticity = (HessRho_EigVal(1) / HessRho_EigVal(2)) - 1 + V = Virial Field = Potential Energy Density = Trace of Stress Tensor + G = Lagrangian Form of Kinetic Energy Density + K = Hamiltonian Form of Kinetic Energy Density + L = K - G = Lagrangian Density = (-1/4)DelSqRho + Vnuc = Electrostatic Potential from Nuclei + Ven = Electron-nuclear attractive contribution to Virial Field V + Vrep = V - Ven = Repulsive contribution to Virial Field V + DelSqV = Laplacian of V + DelSqVen = Laplacian of Ven + DelSqVrep = Laplacian of Vrep + DelSqG = Laplacian of G + DelSqK = Laplacian of K + Stress_EigVals = Eigenvalues of Stress Tensor, Ascending Order + Stress_EigVecs = Eigenvectors of Stress Tensor + -DivStress = Ehrenfest Force Density = Minus Divergence of Stress Tensor + ESP = Total Electrostatic Potential + ESPe = Electrostatic Potential from Electrons + ESPn = Electrostatic Potential from Nuclei + BP = Bond Path + BPL = Bond Path Length + GBL = Geometric Bond Length + GBL_I = Distance Between Nuclear Attractors + GBL_II = Distance Between Nuclei + GBL_III = Sum of Distances Between BCP and Nuclear Attractors + GBL_IV = Sum of Distances Between BCP and Nuclei + +CP# 1 Coords = 4.28784027270087E-18 0.00000000000000E+00 6.24281330157747E-01 + Type = (3,-3) NACP H1 + Rho = 3.5205445145E-01 Rho at Nucleus = 3.4639345457E-01 + GradRho = 2.0685707201E-32 0.0000000000E+00 -3.3188301031E-16 + HessRho_EigVals = -2.6747613819E+00 -2.6747613819E+00 -2.2337495549E+00 + HessRho_EigVec1 = 0.0000000000E+00 1.0000000000E+00 0.0000000000E+00 + HessRho_EigVec2 = 1.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + HessRho_EigVec3 = 0.0000000000E+00 0.0000000000E+00 1.0000000000E+00 + DelSqRho = -7.5832723187E+00 + Bond Ellipticity = NA + V = -1.8958180797E+00 + G = 3.9108414933E-32 + K = 1.8958180797E+00 + L = 1.8958180797E+00 + Vnuc = 1.5038848741E+01 + Ven = -5.2944936437E+00 + Vrep = 3.3986755641E+00 + DelSqV = 9.0353543384E+01 + DelSqVen = 1.1404368536E+02 + DelSqVrep = -2.3690141975E+01 + DelSqG = 1.3704083200E+01 + DelSqK = -1.0405762658E+02 + Stress_EigVals = -6.6869034547E-01 -6.6869034547E-01 -5.5843738872E-01 + Stress_EigVec1 = 0.0000000000E+00 1.0000000000E+00 0.0000000000E+00 + Stress_EigVec2 = 1.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + Stress_EigVec3 = 0.0000000000E+00 0.0000000000E+00 1.0000000000E+00 + -DivStress = -1.1472951317E-16 0.0000000000E+00 1.8736751405E+00 + ESP = -1.0795504472E+00 ESP at Nucleus = -1.0891609788E+00 + ESPe = -1.8379372155E+00 ESPe at Nucleus = -1.8093034306E+00 + ESPn = 7.5838676827E-01 ESPn at Nucleus = 7.2014245182E-01 + +CP# 2 Coords = 8.07402535472091E-17 0.00000000000000E+00 -6.24281330157747E-01 + Type = (3,-3) NACP H2 + Rho = 3.5205445145E-01 Rho at Nucleus = 3.4639345457E-01 + GradRho = -2.3029009970E-32 0.0000000000E+00 3.1114032216E-16 + HessRho_EigVals = -2.6747613819E+00 -2.6747613819E+00 -2.2337495549E+00 + HessRho_EigVec1 = 0.0000000000E+00 1.0000000000E+00 0.0000000000E+00 + HessRho_EigVec2 = 1.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + HessRho_EigVec3 = 0.0000000000E+00 0.0000000000E+00 1.0000000000E+00 + DelSqRho = -7.5832723187E+00 + Bond Ellipticity = NA + V = -1.8958180797E+00 + G = 3.4372630312E-32 + K = 1.8958180797E+00 + L = 1.8958180797E+00 + Vnuc = 1.5038848741E+01 + Ven = -5.2944936437E+00 + Vrep = 3.3986755641E+00 + DelSqV = 9.0353543384E+01 + DelSqVen = 1.1404368536E+02 + DelSqVrep = -2.3690141975E+01 + DelSqG = 1.3704083200E+01 + DelSqK = -1.0405762658E+02 + Stress_EigVals = -6.6869034547E-01 -6.6869034547E-01 -5.5843738872E-01 + Stress_EigVec1 = 0.0000000000E+00 1.0000000000E+00 0.0000000000E+00 + Stress_EigVec2 = 1.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + Stress_EigVec3 = 0.0000000000E+00 0.0000000000E+00 1.0000000000E+00 + -DivStress = 1.1472951317E-16 0.0000000000E+00 -1.8736751405E+00 + ESP = -1.0795504472E+00 ESP at Nucleus = -1.0891609788E+00 + ESPe = -1.8379372155E+00 ESPe at Nucleus = -1.8093034306E+00 + ESPn = 7.5838676827E-01 ESPn at Nucleus = 7.2014245182E-01 + +CP# 3 Coords = 4.25140469099550E-17 0.00000000000000E+00 1.56271704054169E-17 + Type = (3,-1) BCP H1 H2 + Rho = 2.4238159636E-01 + GradRho = -2.9500405458E-33 0.0000000000E+00 -1.4493601639E-17 + HessRho_EigVals = -8.1185361114E-01 -8.1185361114E-01 9.2746167498E-01 + HessRho_EigVec1 = 0.0000000000E+00 1.0000000000E+00 0.0000000000E+00 + HessRho_EigVec2 = 1.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + HessRho_EigVec3 = 0.0000000000E+00 0.0000000000E+00 1.0000000000E+00 + DelSqRho = -6.9624554730E-01 + Bond Ellipticity = 0.0000000000E+00 + V = -1.7406138683E-01 + G = 1.0833355937E-34 + K = 1.7406138683E-01 + L = 1.7406138683E-01 + Vnuc = 2.8805698073E+00 + Ven = -6.9819710833E-01 + Vrep = 5.2413572150E-01 + DelSqV = -7.2014502938E+00 + DelSqVen = 2.0055839020E+00 + DelSqVrep = -9.2070341959E+00 + DelSqG = 2.2468679172E+00 + DelSqK = 4.9545823766E+00 + Stress_EigVals = -2.0296340279E-01 -2.0296340279E-01 2.3186541875E-01 + Stress_EigVec1 = 0.0000000000E+00 1.0000000000E+00 0.0000000000E+00 + Stress_EigVec2 = 1.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + Stress_EigVec3 = 0.0000000000E+00 0.0000000000E+00 1.0000000000E+00 + -DivStress = 1.0257324574E-33 0.0000000000E+00 5.4120047348E-17 + ESP = 9.6071215954E-01 + ESPe = -1.9198576478E+00 + ESPn = 2.8805698073E+00 + BPL = 1.2485626603E+00 = 6.2428133016E-01 + 6.2428133016E-01 + GBL_I = 1.2485626603E+00 + GBL_II = 1.3886141519E+00 + GBL_III = 1.2485626603E+00 = 6.2428133016E-01 + 6.2428133016E-01 + GBL_IV = 1.3886141519E+00 = 6.9430707596E-01 + 6.9430707596E-01 + +Number of NACPs = 2 +Number of NNACPs = 0 +Number of BCPs = 1 +Number of RCPs = 0 +Number of CCPs = 0 +NumNACP + NumNNACP - NumBCP + NumRCP - NumCCP = 1 +Poincare-Hopf Relationship is Satisfied + +Total time for electron density critical point search, analysis and connectivity = 0 sec (NProc = 1) + +Virial-Based Atomic Energy Components: +------------------------------------- + Ee(A) = E(A) - W(A) = -T(A) + = Contribution of Atom A to Electronic Energy of Molecule. + Not additive to give molecular Ee unless molecular electronic virial theorem is satisfied. + T(A) = Electronic Kinetic Energy of Atom A (Hamiltonian Form) + Ven(A) = Ven(A,Mol) = VenT(A) + = Attraction Energy Between Electron Density Distribution of Atom A and Nuclei of Molecule + VenO(A) = Ven(A,A) + = Attraction Energy Between Electron Density Distribution of Atom A and Nucleus of Atom A + Vee(A) = Vee(A,A) + Vee(A,A')/2 + = Two-Electron Interaction Energy of Atom A with Itself Plus Half of Two-Electron Interaction Energy + Between Atom A and Other Atoms of Molecule + Vnn(A) - W(A) = Contribution of Atom A to the Nuclear Repulsion Energy of Molecule Minus + the Nuclear Virial of Energy-Gradient-Based Forces on Nuclei of Molecule. + Calculation of Vnn(A) - W(A) assumes satisfaction of the atomic virial theorem: + 2T(A) + Ven(A) + Vee(A) + Vnn(A) - W(A) = 0 +See "2EDM Note" and "DFT Note". +-------------------------------------------------------------------------------------------------------------------- +Atom A Ee(A) T(A) Ven(A) VenO(A) Vee(A) Vnn(A) - W(A) +-------------------------------------------------------------------------------------------------------------------- +H1 -5.6044277123E-01 5.6044277123E-01 -1.8093034930E+00 -1.2151247030E+00 +H2 -5.6044277123E-01 5.6044277123E-01 -1.8093034930E+00 -1.2151247030E+00 +-------------------------------------------------------------------------------------------------------------------- +Total -1.1208855425E+00 1.1208855425E+00 -3.6186069860E+00 -2.4302494060E+00 + +More Virial-Based Atomic Energy Components: +------------------------------------------ + E(A) = Ee(A) + W(A) + = T(A) + Ven(A) + Vee(A) + Vnn(A) = Contribution of Atom A to Total Energy E of Molecule + Not additive to give molecular E unless molecular virial theorem is satisfied. + Ee(A) = E(A) - W(A) = Contribution of Atom A to Electronic Energy of Molecule + Not additive to give molecular Ee unless molecular virial theorem is satisfied. + W(A) = Contribution of Atom A to Nuclear Virial of Energy-Gradient-Based Forces on Nuclei of Molecule + Vnn(A) = Contribution of Atom A to Nuclear Repulsion Energy of Molecule + Calculation of Vnn(A) assumes satisfaction of the atomic virial theorem: + 2T(A) + Ven(A) + Vee(A) + Vnn(A) - W(A) = 0 + VeeC(A) = Coulomb Part of Vee(A) + VeeX(A) = Exchange-Correlation Part of Vee(A) +See "2EDM Note" and "DFT Note". +-------------------------------------------------------------------------------------------------------------------- +Atom A E(A) Ee(A) W(A) Vnn(A) VeeC(A) VeeX(A) +-------------------------------------------------------------------------------------------------------------------- +H1 -5.6044273869E-01 -5.6044277123E-01 3.2544183216E-08 +H2 -5.6044273869E-01 -5.6044277123E-01 3.2544183216E-08 +-------------------------------------------------------------------------------------------------------------------- +Total -1.1208854774E+00 -1.1208855425E+00 6.5088366431E-08 + +IQA Atomic Energy Components: +---------------------------- + E_IQA(A) = Contribution of Atom A to Total Energy E of Molecule, Using IQA Additive Atomic Energy Definition + = T(A) + Vne(A,Mol)/2 + Ven(A,Mol)/2 + Vee(A) + Vnn(A,Mol)/2 + T(A) = Electronic Kinetic Energy of Atom A (Hamiltonian Form) + Vne(A,Mol)/2 = Half of Attraction Energy Between Nucleus of Atom A and Electron Density Distribution of Molecule + Ven(A,Mol)/2 = Half of Attraction Energy Between Electron Density Distribution of Atom A and Nuclei of Molecule + Vee(A) = Vee(A,A) + Vee(A,A')/2 + = Two-Electron Interaction Energy of Atom A with Itself Plus Half of Two-Electron Interaction Energy + Between Atom A and Other Atoms of Molecule + Vnn(A,Mol)/2 = Vnn(A,A')/2 = Half of Repulsion Energy Between Nucleus of Atom A and Other Nuclei of Molecule + VeeC(A) = Coulomb Part of Vee(A) + VeeX(A) = Exchange-Correlation Part of Vee(A) +See "2EDM Note" and "DFT Note". +-------------------------------------------------------------------------------------------------------------------------------------------------------- +Atom A E_IQA(A) T(A) Vne(A,Mol)/2 Ven(A,Mol)/2 Vee(A) Vnn(A,Mol)/2 VeeC(A) VeeX(A) +-------------------------------------------------------------------------------------------------------------------------------------------------------- +H1 5.6044277123E-01 -9.0465171529E-01 -9.0465174649E-01 3.6007122591E-01 +H2 5.6044277123E-01 -9.0465171529E-01 -9.0465174649E-01 3.6007122591E-01 +-------------------------------------------------------------------------------------------------------------------------------------------------------- +Total 1.1208855425E+00 -1.8093034306E+00 -1.8093034930E+00 7.2014245182E-01 + +More IQA Atomic Energy Components: +--------------------------------- + Vneen(A) = Vne(A,Mol)/2 + Ven(A,Mol)/2 + V_IQA(A) = Vne(A,Mol)/2 + Ven(A,Mol)/2 + Vee(A,A) + Vee(A,A')/2 + Vnn(A,A')/2 + = VC_IQA(A) + VX_IQA(A) = Potential Energy Contribution to E_IQA(A) + = E_IQA(A) - T(A) + VC_IQA(A) = Vne(A,Mol)/2 + Ven(A,Mol)/2 + VeeC(A,A) + VeeC(A,A')/2 + Vnn(A,A')/2 + = Coulomb Potential Energy Contribution to E_IQA(A) + = E_IQA(A) - T(A) - VeeX(A) + VX_IQA(A) = VeeX(A,A) + VeeX(A,A')/2 + = Exchange-Correlation Energy Contribution to E_IQA(A) + = E_IQA(A) - T(A) - VC_IQA(A) +See "2EDM Note" and "DFT Note". +-------------------------------------------------------------------------------- +Atom A Vneen(A) V_IQA(A) VC_IQA(A) VX_IQA(A) +-------------------------------------------------------------------------------- +H1 -1.8093034618E+00 +H2 -1.8093034618E+00 +-------------------------------------------------------------------------------- +Total -3.6186069236E+00 + +IQA Intraatomic ("Self") Energy Components: +------------------------------------------ + E_IQA_Intra(A) = T(A) + Vne(A,A) + Vee(A,A) + = Intraatomic ("Self") Contribution to E_IQA(A) + T(A) = Electronic Kinetic Energy of Atom A (Hamiltonian Form) + Vne(A,A) = Attraction Energy Between Electron Density Distribution of Atom A and Nucleus of Atom A + Vee(A,A) = Two-electron Interaction Energy of Atom A With Itself + VeeC(A,A) = Coulomb Part of Vee(A,A) + VeeX(A,A) = Exchange-Correlation Part of Vee(A,A) +See "2EDM Note" and "DFT Note". +-------------------------------------------------------------------------------------------------------------------- +Atom A E_IQA_Intra(A) T(A) Vne(A,A) Vee(A,A) VeeC(A,A) VeeX(A,A) +-------------------------------------------------------------------------------------------------------------------- +H1 5.6044277123E-01 -1.2151247030E+00 +H2 5.6044277123E-01 -1.2151247030E+00 +-------------------------------------------------------------------------------------------------------------------- +Total 1.1208855425E+00 -2.4302494060E+00 + +IQA Atomic Contributions to Interatomic ("Interaction") Energy Components: +------------------------------------------------------------------------- + E_IQA_Inter(A) = E_IQA_Inter(A,A')/2 + = Vne(A,A')/2 + Ven(A,A')/2 + Vee(A,A')/2 + Vnn(A) + = Interatomic ("Interaction") Contribution to E_IQA(A) = E_IQA(A) - E_IQA_Intra(A) + Vne(A,A')/2 = Half of Attraction Energy Between Nucleus of Atom A and Electron Density Distribution of Other Atoms in Molecule + = (1/2)[Vne(A,Mol) - Vne(A,A)] + Ven(A,A')/2 = Half of Attraction Energy Between Electron Density Distribution of Atom A and Nuclei of Other Atoms in Molecule + = (1/2)[Ven(A,Mol) - Ven(A,A)] + Vee(A,A')/2 = Half of Two-electron Interaction Energy Between Atom A and Other Atoms of Molecule + = Vee(A) - Vee(A,A) + Vnn(A) = Vnn(A,Mol)/2 = Vnn(A,A')/2 = Half of Repulsion Energy Between Nucleus of Atom A and Other Nuclei of Molecule + VeeC(A,A')/2 = Coulomb Part of Vee(A,A')/2 + VeeX(A,A')/2 = Exchange-Correlation Part of Vee(A,A')/2 +See "2EDM Note" and "DFT Note". +-------------------------------------------------------------------------------------------------------------------------------------- +Atom A E_IQA_Inter(A) Vne(A,A')/2 Ven(A,A')/2 Vee(A,A')/2 Vnn(A) VeeC(A,A')/2 VeeX(A,A')/2 +-------------------------------------------------------------------------------------------------------------------------------------- +H1 -2.9708936377E-01 -2.9708939498E-01 3.6007122591E-01 +H2 -2.9708936377E-01 -2.9708939498E-01 3.6007122591E-01 +-------------------------------------------------------------------------------------------------------------------------------------- +Total -5.9417872754E-01 -5.9417878996E-01 7.2014245182E-01 + +More IQA Atomic Contributions to Interatomic ("Interaction") Energy Components: +------------------------------------------------------------------------------ + Vneen(A,A')/2 = Vne(A,A')/2 + Ven(A,A')/2 + V_IQA_Inter(A) = Vne(A,A')/2 + Ven(A,A')/2 + Vee(A,A')/2 + Vnn(A,A')/2 + = VC_IQA_Inter(A) + VX_IQA_Inter(A) + = Potential Energy Contribution to E_IQA_Inter(A) + = E_IQA_Inter(A) + VC_IQA_Inter(A) = Vne(A,A')/2 + Ven(A,A')/2 + VeeC(A,A')/2 + Vnn(A,A')/2 + = Coulomb Potential Energy Contribution to E_IQA_Inter(A) + = E_IQA_Inter(A) - VeeX(A,A')/2 + VX_IQA_Inter(A) = VeeX(A,A')/2 + = Exchange-Correlation Energy Contribution to E_IQA_Inter(A) + = E_IQA_Inter(A) - VC_IQA_Inter(A) +See "2EDM Note" and "DFT Note". +-------------------------------------------------------------------------------- +Atom A Vneen(A,A')/2 V_IQA_Inter(A) VC_IQA_Inter(A) VX_IQA_Inter(A) +-------------------------------------------------------------------------------- +H1 -5.9417875875E-01 +H2 -5.9417875875E-01 +-------------------------------------------------------------------------------- +Total -1.1883575175E+00 + +Atomic Electron Populations, Localization and Delocalization Data: +----------------------------------------------------------------- + N(A) = Average Number of Electrons in Atom A + LI(A) = Electron Localization Index of Atom A = Average Number of Electrons Localized in Atom A + %Loc(A) = 100 * LI(A) / N(A) + = Percentage of Average Number of Electrons in Atom A that are Localized in Atom A + DI(A,A')/2 = Electron Delocalization Index of Atom A = Average Number of Electrons in Atom A + that are Delocalized (Shared) Between Atom A and Other Atoms of Molecule + = N(A) - LI(A) + %Deloc(A,A') = 100 * (DI(A,A')/2) / N(A) + = Percentage of Average Number of Electrons in Atom A That are Shared With Other + Atoms of Molecule +Note: ECP-Modeled Core Electrons are NOT Included Here +See "2EDM Note". +-------------------------------------------------------------------------------------------------- +Atom A N(A) LI(A) %Loc(A) DI(A,A')/2 %Deloc(A,A') +-------------------------------------------------------------------------------------------------- +H1 1.0000000266E+00 5.0000002660E-01 5.0000001330E+01 5.0000000000E-01 4.9999998670E+01 +H2 1.0000000266E+00 5.0000002660E-01 5.0000001330E+01 5.0000000000E-01 4.9999998670E+01 +-------------------------------------------------------------------------------------------------- +Total 2.0000000532E+00 1.0000000532E+00 5.0000001330E+01 1.0000000000E+00 4.9999998670E+01 + +More Atomic Electron Populations, Localization and Delocalization Data: +---------------------------------------------------------------------- + N(A) = Average Number of Electrons in Atom A + = LI(A) + DI(A,A')/2 = LI(A) + DI_Bond(A,A')/2 + DI_NonBond(A,A')/2 + LI(A) = Electron Localization Index of Atom A = Average Number of Electrons Localized in Atom A + DI(A,A')/2 = Electron Delocalization Index of Atom A = Average Number of Electrons in Atom A that + are Delocalized (Shared) Between Atom A and Other Atoms of Molecule + = N(A) - LI(A) = DI_Bond(A,A')/2 + DI_NonBond(A,A')/2 + DI_Bond(A,A')/2 = Bonding Contribution to DI(A,A')/2 = Average Number of Electrons in Atom A that + are Shared With Atoms to Which Atom A is Bonded + DI_NonBond(A,A')/2 = Non-Bonding Contribution to DI(A,A')/2 = Average Number of Electrons in Atom A + that are Shared with Atoms to Which Atom A is NOT bonded + = DI(A,A')/2 - DI_Bond(A,A')/2 +Note: ECP-Modeled Core Electrons are NOT Included Here +See "2EDM Note". +----------------------------------------------------------------------------------------------------- +Atom A N(A) LI(A) DI(A,A')/2 DI_Bond(A,A')/2 DI_NonBond(A,A')/2 +----------------------------------------------------------------------------------------------------- +H1 1.0000000266E+00 5.0000002660E-01 5.0000000000E-01 5.0000002660E-01 -2.6600000869E-08 +H2 1.0000000266E+00 5.0000002660E-01 5.0000000000E-01 5.0000002660E-01 -2.6600000869E-08 +----------------------------------------------------------------------------------------------------- +Total 2.0000000532E+00 1.0000000532E+00 1.0000000000E+00 1.0000000532E+00 -5.3200001737E-08 + +Atomic Electron Pair Contributions: +---------------------------------- + D2(A,A) = Average Number of Electron Pairs Formed in Atom A + = (1/2)[N(A) * N(A) - LI(A)] + D2(A,A') = Half of Average Number of Electron Pairs Formed + Between Atom A and Other Atoms of Molecule + = (1/2)[N(A) * N(A') - DI(A,A') / 2] + D2(A,Mol) = D2(A,A) + D2(A,A') +Note: ECP-Modeled Core Electrons are NOT Included Here +See "2EDM Note". +-------------------------------------------------------------- +Atom A D2(A,A) D2(A,A') D2(A,Mol) +-------------------------------------------------------------- +H1 2.5000001330E-01 2.5000000000E-01 5.0000001330E-01 +H2 2.5000001330E-01 2.5000000000E-01 5.0000001330E-01 +-------------------------------------------------------------- +Total 5.0000002660E-01 5.0000000000E-01 1.0000000266E+00 + +Diatomic Electron Pair Contributions and Delocalization Data: +------------------------------------------------------------ + 2*D2(A,B) = 2*D2(B,A) = Average Number of Electron Pairs Formed Between Atoms A and B + = N(A) * N(B) - DI(A,B) / 2 + DI(A,B) = DI(B,A) = Electron Delocalization Index. Average Number of Electrons Delocalized + (Shared) Between Atoms A and B. Bond Index When Atoms A and B Connected by a Bond Path + %Deloc(A,B) = 100 * (DI(A,B)/2) / N(A) + = Percentage of Average Number of Electrons in Atom A That are Shared With Atom B + %Deloc(B,A) = 100 * (DI(A,B)/2) / N(B) + = Percentage of Average Number of Electrons in Atom B That are Shared With Atom A +Note: ECP-Modeled Core Electrons are NOT Included Here +See "2EDM Note". +---------------------------------------------------------------------------------------------------- +Atom A Atom B 2*D2(A,B) DI(A,B) %Deloc(A,B) %Deloc(B,A) +---------------------------------------------------------------------------------------------------- +H1 H2 5.0000002660E-01 1.0000000532E+00 5.0000001330E+01 5.0000001330E+01 (Bonded) + + +Areas of Interatomic Surfaces: +----------------------------- + Area_IAS(A|B),0.0004 = Area of the Part of Interatomic Surface Between Atoms + A and B Whose Electron Density is Greater Than 0.0004 + Area_IAS(A|B),0.001 = Area of the Part of Interatomic Surface Between Atoms + A and B Whose Electron Density is Greater Than 0.001 + Area_IAS(A|B),0.002 = Area of the Part of Interatomic Surface Between Atoms + A and B Whose Electron Density is Greater Than 0.002 +----------------------------------------------------------------------------------------- +Atom A Atom B Area_IAS(A|B),0.0004 Area_IAS(A|B),0.001 Area_IAS(A|B),0.002 +----------------------------------------------------------------------------------------- +H1 H2 3.5829161590E+01 2.7845139783E+01 2.2306460218E+01 +----------------------------------------------------------------------------------------- +H1 Total 3.5829161590E+01 2.7845139783E+01 2.2306460218E+01 + +H2 H1 3.5829161590E+01 2.7845139783E+01 2.2306460218E+01 +----------------------------------------------------------------------------------------- +H2 Total 3.5829161590E+01 2.7845139783E+01 2.2306460218E+01 + +----------------------------------------------------------------------------------------- +Total Total 7.1658323180E+01 5.5690279566E+01 4.4612920436E+01 + + +Some Properties of Interatomic Surfaces: +--------------------------------------- + N_IAS(A|B) = Integral of Electron Density Rho(r) Over Interatomic Surface Between Atoms A and B + G_IAS(A|B) = Integral of Lagrangian Kinetic Energy Density G(r) Over Interatomic Surface Between Atoms A and B + K_IAS(A|B) = Integral of Hamiltonian Kinetic Energy Density K(r) Over Interatomic Surface Between Atoms A and B + L_IAS(A|B) = Integral of Lagrangian Density L(r) Over Interatomic Surface Between Atoms A and B + DelSqRho_IAS(A|B) = Integral of Laplacian of Electron Density DelSqRho(r) Over Interatomic Surface Between Atoms A and B + V_IAS(A|B) = Integral of Virial Field V(r) Over Interatomic Surface Between Atoms A and B +------------------------------------------------------------------------------------------------------------------------------ +Atom A Atom B N_IAS(A|B) G_IAS(A|B) K_IAS(A|B) L_IAS(A|B) DelSqRho_IAS(A|B) V_IAS(A|B) +------------------------------------------------------------------------------------------------------------------------------ +H1 H2 7.2188590112E-01 2.9497448067E-01 2.7188719562E-01 -2.3087285052E-02 9.2349140209E-02 -5.6686167629E-01 +------------------------------------------------------------------------------------------------------------------------------ +H1 Total 7.2188590112E-01 2.9497448067E-01 2.7188719562E-01 -2.3087285052E-02 9.2349140209E-02 -5.6686167629E-01 + +H2 H1 7.2188590112E-01 2.9497448067E-01 2.7188719562E-01 -2.3087285052E-02 9.2349140209E-02 -5.6686167629E-01 +------------------------------------------------------------------------------------------------------------------------------ +H2 Total 7.2188590112E-01 2.9497448067E-01 2.7188719562E-01 -2.3087285052E-02 9.2349140209E-02 -5.6686167629E-01 + +------------------------------------------------------------------------------------------------------------------------------ +Total Total 1.4437718022E+00 5.8994896134E-01 5.4377439124E-01 -4.6174570104E-02 1.8469828042E-01 -1.1337233526E+00 + + +IsoDensity Surface Data: +----------------------- + IDS = IsoDensity Surface = Isosurface of the Electron Density Distribution + Area_IDS(A) = Surface Area of Atom A's Part of IDS + ESP = Total Electrostatic Potential + ESP_Int_IDS(A) = Surface Integral of ESP Over Atom A's Part of IDS + ESP_Max_IDS(A) = Maximum Value of ESP on Atom A's Part of IDS + ESP_Min_IDS(A) = Minimum Value of ESP on Atom A's Part of IDS + ESP_Avg_IDS(A) = Average Value of ESP on Atom A's Part of IDS + ESP_MAD_IDS(A) = Mean Absolute Deviation of ESP on Atom A's Part of IDS + ESP_Var_IDS(A) = Variance of ESP on Atom A's Part of IDS + |ESP|_Int_IDS(A) = Surface Integral of |ESP| Over Atom A's Part of IDS + ESP*ESP_Int_IDS(A) = Surface Integral of ESP*ESP Over Atom A's Part of IDS + Area_ESP+_IDS(A) = Surface Area of Positive ESP Regions of Atom A's Part of IDS + ESP+_Int_IDS(A) = Surface Integral of ESP Over Positive ESP Regions of Atom A's Part of IDS + Area_ESP-_IDS(A) = Surface Area of Negative ESP Regions of Atom A's Part of IDS + ESP-_Int_IDS(A) = Surface Integral of ESP Over Negative ESP Regions of Atom A's Part of IDS + ESP+_Min_IDS(A) = Minimum Value of ESP on Positive ESP Regions of Atom A's Part of IDS + ESP+_Avg_IDS(A) = Average Value of ESP on Positive ESP Regions of Atom A's Part of IDS + ESP+_MAD_IDS(A) = Mean Absolute Deviation of ESP on Positive ESP Regions of Atom A's Part of IDS + ESP+_Var_IDS(A) = Variance of ESP on Positive ESP Regions of Atom A's Part of IDS + ESP+*ESP+_Int_IDS(A) = Surface Integral of ESP*ESP Over Positive Regions of Atom A's Part of IDS + ESP-_Min_IDS(A) = Minimum Value of ESP on Negative ESP Regions of Atom A's Part of IDS + ESP-_Avg_IDS(A) = Average Value of ESP on Negative ESP Regions of Atom A's Part of IDS + ESP-_MAD_IDS(A) = Mean Absolute Deviation of ESP on Negative ESP Regions of Atom A's Part of IDS + ESP-_Var_IDS(A) = Variance of ESP on Negative ESP Regions of Atom A's Part of IDS + ESP-*ESP-_Int_IDS(A) = Surface Integral of ESP*ESP Over Negative Regions of Atom A's Part of IDS + +0.0004 IsoDensity Surface: +-------------------------------------------------------------------------------------------------------------------------------------- +Atom A Area_IDS(A) ESP_Int_IDS(A) ESP_Max_IDS(A) ESP_Min_IDS(A) ESP_Avg_IDS(A) ESP_MAD_IDS(A) ESP_Var_IDS(A) +-------------------------------------------------------------------------------------------------------------------------------------- +H1 7.5992758513E+01 +H2 7.5992758513E+01 +-------------------------------------------------------------------------------------------------------------------------------------- +Total 1.5198551703E+02 + +0.001 IsoDensity Surface: +-------------------------------------------------------------------------------------------------------------------------------------- +Atom A Area_IDS(A) ESP_Int_IDS(A) ESP_Max_IDS(A) ESP_Min_IDS(A) ESP_Avg_IDS(A) ESP_MAD_IDS(A) ESP_Var_IDS(A) +-------------------------------------------------------------------------------------------------------------------------------------- +H1 5.9837040043E+01 1.3408875466E-01 1.1988079555E-02 -3.4140821745E-03 2.2408988574E-03 4.1364697352E-03 2.2523574101E-05 +H2 5.9837040043E+01 1.3408875466E-01 1.1988079555E-02 -3.4140821745E-03 2.2408988574E-03 4.1364697352E-03 2.2523574101E-05 +-------------------------------------------------------------------------------------------------------------------------------------- +Total 1.1967408009E+02 2.6817750932E-01 1.1988079555E-02 -3.4140821745E-03 2.2408988574E-03 2.2523574101E-05 + +0.001 IsoDensity Surface: +-------------------------------------------------------------------------------------------------------------------------- +Atom A |ESP|_Int_IDS(A) ESP*ESP_Int_IDS(A) Area_ESP+_IDS(A) ESP+_Int_IDS(A) Area_ESP-_IDS(A) ESP-_Int_IDS(A) +-------------------------------------------------------------------------------------------------------------------------- +H1 2.4903182368E-01 1.6482233425E-03 3.4304892464E+01 1.9156028917E-01 2.5532147579E+01 -5.7471534508E-02 +H2 2.4903182368E-01 1.6482233425E-03 3.4304892464E+01 1.9156028917E-01 2.5532147579E+01 -5.7471534508E-02 +-------------------------------------------------------------------------------------------------------------------------- +Total 4.9806364736E-01 3.2964466850E-03 6.8609784928E+01 3.8312057834E-01 5.1064295158E+01 -1.1494306902E-01 + +0.001 IsoDensity Surface: +----------------------------------------------------------------------------------------------------------- +Atom A ESP+_Min_IDS(A) ESP+_Avg_IDS(A) ESP+_MAD_IDS(A) ESP+_Var_IDS(A) ESP+*ESP+_Int_IDS(A) +----------------------------------------------------------------------------------------------------------- +H1 1.3796512573E-05 5.5840515860E-03 3.0465632487E-03 1.2308492518E-05 1.4919240488E-03 +H2 1.3796512573E-05 5.5840515860E-03 3.0465632487E-03 1.2308492518E-05 1.4919240488E-03 +----------------------------------------------------------------------------------------------------------- +Total 1.3796512573E-05 5.5840515860E-03 1.2308492519E-05 2.9838480976E-03 + +0.001 IsoDensity Surface: +----------------------------------------------------------------------------------------------------------- +Atom A ESP-_Max_IDS(A) ESP-_Avg_IDS(A) ESP-_MAD_IDS(A) ESP-_Var_IDS(A) ESP-*ESP-_Int_IDS(A) +----------------------------------------------------------------------------------------------------------- +H1 -2.9916170041E-07 -2.2509479209E-03 8.8644545561E-04 1.0549000040E-06 1.5629929369E-04 +H2 -2.9916170052E-07 -2.2509479209E-03 8.8644545561E-04 1.0549000040E-06 1.5629929369E-04 +----------------------------------------------------------------------------------------------------------- +Total -2.9916170041E-07 -2.2509479209E-03 1.0549000039E-06 3.1259858738E-04 + +0.002 IsoDensity Surface: +-------------------------------------------------------------------------------------------------------------------------------------- +Atom A Area_IDS(A) ESP_Int_IDS(A) ESP_Max_IDS(A) ESP_Min_IDS(A) ESP_Avg_IDS(A) ESP_MAD_IDS(A) ESP_Var_IDS(A) +-------------------------------------------------------------------------------------------------------------------------------------- +H1 4.8195209814E+01 +H2 4.8195209814E+01 +-------------------------------------------------------------------------------------------------------------------------------------- +Total 9.6390419628E+01 + + +Atomic Surface Area and Volume Data: +----------------------------------- + Area(A) = Area_IAS(A|Total) + Area_IDS(A) + Vol(A) = Volume Bounded by Interatomic Surfaces (IASs) of Atom A and by an + Isosurface of the Electron Density Distribution (IsoDensity Surface) + N(Vol(A)) = Average Number of Electrons in Vol(A) + N(Vol(A))/Vol(A) = Average Electron Density in Vol(A) + %N(Vol(A)) = 100 * N(Vol(A)) / N(A) + = Percentage of Atom A's Electron Population in Vol(A) + +IASs and 0.0004 IsoDensity Surface: +-------------------------------------------------------------------------------------------------- +Atom A Area(A) Vol(A) N(Vol(A)) N(Vol(A))/Vol(A) %N(Vol(A)) +-------------------------------------------------------------------------------------------------- +H1 1.1182192010E+02 8.7997833405E+01 9.8613798749E-01 1.1206389400E-02 9.8613796126E+01 +H2 1.1182192010E+02 8.7997833405E+01 9.8613798749E-01 1.1206389400E-02 9.8613796126E+01 +-------------------------------------------------------------------------------------------------- +Total 2.2364384021E+02 1.7599566681E+02 1.9722759750E+00 1.1206389400E-02 9.8613796126E+01 + +IASs and 0.001 IsoDensity Surface: +-------------------------------------------------------------------------------------------------- +Atom A Area(A) Vol(A) N(Vol(A)) N(Vol(A))/Vol(A) %N(Vol(A)) +-------------------------------------------------------------------------------------------------- +H1 8.7682179826E+01 6.1290631525E+01 9.6880942649E-01 1.5806810966E-02 9.6880940072E+01 +H2 8.7682179826E+01 6.1290631525E+01 9.6880942649E-01 1.5806810966E-02 9.6880940072E+01 +-------------------------------------------------------------------------------------------------- +Total 1.7536435965E+02 1.2258126305E+02 1.9376188530E+00 1.5806810966E-02 9.6880940072E+01 + +IASs and 0.002 IsoDensity Surface: +-------------------------------------------------------------------------------------------------- +Atom A Area(A) Vol(A) N(Vol(A)) N(Vol(A))/Vol(A) %N(Vol(A)) +-------------------------------------------------------------------------------------------------- +H1 7.0501670032E+01 4.4379295922E+01 9.4461808928E-01 2.1285107608E-02 9.4461806415E+01 +H2 7.0501670032E+01 4.4379295922E+01 9.4461808928E-01 2.1285107608E-02 9.4461806415E+01 +-------------------------------------------------------------------------------------------------- +Total 1.4100334006E+02 8.8758591844E+01 1.8892361786E+00 2.1285107608E-02 9.4461806415E+01 + +Bond Contributions to Atomic Net Charges: +---------------------------------------- + q(A|B) = Contribution of Bond Between Atom A and Atom B to q(A) + q(A)* = Sum of q(A|B) Over all B + q(A) = Net Charge of Atom A +------------------------------------------------------------------------ +Atom A Atom B q(A|B) q(A)* q(A) +------------------------------------------------------------------------ +H1 H2 -8.8666666601E-09 +H1 -8.8666666601E-09 -2.6599999980E-08 +H2 H1 -8.8666666601E-09 +H2 -8.8666666601E-09 -2.6599999980E-08 + +Atomic Dipole Moments: +--------------------- + Mu_Intra(A) = Intraatomic Dipole Moment Contribution of Atom A + Mu_Bond(A) = Bonding Dipole Moment Contribution of Atom A + Mu(A) = Mu_Intra(A) + Mu_Bond(A) + = Total Dipole Moment Contribution of Atom A + +Atom A Mu_Intra_X(A) Mu_Bond_X(A) Mu_X(A) +------------------------------------------------------------- +H1 5.9457185814E-06 3.7695788232E-25 5.9457185814E-06 +H2 6.6001162780E-06 -3.7695788232E-25 6.6001162780E-06 +------------------------------------------------------------- +Total 1.2545834859E-05 -1.3775324424E-40 1.2545834859E-05 + +Atom A Mu_Intra_Y(A) Mu_Bond_Y(A) Mu_Y(A) +------------------------------------------------------------- +H1 -2.8816560329E-06 0.0000000000E+00 -2.8816560329E-06 +H2 -3.0655514662E-07 0.0000000000E+00 -3.0655514662E-07 +------------------------------------------------------------- +Total -3.1882111795E-06 0.0000000000E+00 -3.1882111795E-06 + +Atom A Mu_Intra_Z(A) Mu_Bond_Z(A) Mu_Z(A) +------------------------------------------------------------- +H1 -1.2778860188E-01 -6.1561894023E-09 -1.2778860804E-01 +H2 1.2778860188E-01 6.1561894023E-09 1.2778860804E-01 +------------------------------------------------------------- +Total 0.0000000000E+00 1.6543612251E-24 0.0000000000E+00 + +Atom A |Mu_Intra(A)| |Mu_Bond(A)| |Mu(A)| +------------------------------------------------------------- +H1 1.2778860205E-01 6.1561894023E-09 1.2778860821E-01 +H2 1.2778860205E-01 6.1561894023E-09 1.2778860821E-01 +------------------------------------------------------------- +Total 1.2944599756E-05 1.6543612251E-24 1.2944599756E-05 + +Bond Contributions to Atomic Dipole Moments: +------------------------------------------- + Mu_Bond(A|B) = Contribution of Bond Between Atom A and Atom B to Mu_Bond(A) + Mu_Bond(A) = Sum of Mu_Bond(A|B) Over All B + = Total Bonding Dipole Moment Contribution of Atom A + +Atom A Atom B Mu_Bond_X(A|B) Mu_Bond_X(A) +------------------------------------------------------ +H1 H2 3.7695788232E-25 +H1 3.7695788232E-25 +H2 H1 -3.7695788232E-25 +H2 -3.7695788232E-25 + +Atom A Atom B Mu_Bond_Y(A|B) Mu_Bond_Y(A) +------------------------------------------------------ +H1 H2 0.0000000000E+00 +H1 0.0000000000E+00 +H2 H1 0.0000000000E+00 +H2 0.0000000000E+00 + +Atom A Atom B Mu_Bond_Z(A|B) Mu_Bond_Z(A) +------------------------------------------------------ +H1 H2 -6.1561894023E-09 +H1 -6.1561894023E-09 +H2 H1 6.1561894023E-09 +H2 6.1561894023E-09 + +Atom A Atom B |Mu_Bond(A|B)| |Mu_Bond(A)| +------------------------------------------------------ +H1 H2 6.1561894023E-09 +H1 6.1561894023E-09 +H2 H1 6.1561894023E-09 +H2 6.1561894023E-09 + +Atomic Traceless Quadrupole Moment Tensors: +------------------------------------------ + Q(A) = Traceless Form of Quadrupole Moment Tensor of Atom A's Electronic Charge + Density Distribution, Using the Nucleus of Atom A as Origin + Q_XX(A) = -[3(A) - (A)] + Q_XY(A) = -3(A) + Q_XZ(A) = -3(A) + Q_YY(A) = -[3(A) - (A)] + Q_YZ(A) = -3(A) + Q_ZZ(A) = -[3(A) - (A)] +-------------------------------------------------------------------------------------------------------------------- +Atom A Q_XX(A) Q_XY(A) Q_XZ(A) Q_YY(A) Q_YZ(A) Q_ZZ(A) +-------------------------------------------------------------------------------------------------------------------- +H1 -3.3499920162E-01 -3.5364038771E-07 2.7264206717E-05 -3.3500176992E-01 -1.4913017770E-05 6.7000097154E-01 +H2 -3.3499949031E-01 -8.8495961250E-07 -3.1076155665E-05 -3.3500148123E-01 -8.7269018483E-08 6.7000097154E-01 + +Eigenvalues and Eigenvectors of Atomic Traceless Quadrupole Moment Tensors: +-------------------------------------------------------------------------- + Q_EigVal_n(A) = nth Eigenvalue of Q(A) + Q_EigVec_n_X(A) = X Component of the nth Eigenvector of Q(A) + Q_EigVec_n_Y(A) = Y Component of the nth Eigenvector of Q(A) + Q_EigVec_n_Z(A) = Z Component of the nth Eigenvector of Q(A) +-------------------------------------------------------------------------------------------- +Atom A n Q_EigVal_n(A) Q_EigVec_n_X(A) Q_EigVec_n_Y(A) Q_EigVec_n_Z(A) +------------------------------------------------------------------------------------------------ +H1 1 -3.3500181785E-01 1.3384052347E-01 9.9100288302E-01 1.1074385092E-05 +H1 2 -3.3499915466E-01 9.9100288271E-01 -1.3384052310E-01 -2.8870517321E-05 +H1 3 6.7000097250E-01 2.7128564405E-05 -1.4838792701E-05 9.9999999952E-01 +H2 1 -3.3500181785E-01 3.5552081997E-01 9.3466836174E-01 1.1074385118E-05 +H2 2 -3.3499915466E-01 9.3466836130E-01 -3.5552082014E-01 2.8870517308E-05 +H2 3 6.7000097250E-01 -3.0921533595E-05 -8.6807404110E-08 9.9999999952E-01 + +Atomic Radial Moments: +--------------------- + R-2(A) = (A) + R-1(A) = (A) + R0(A) = (A) = N(A) + R+1(A) = (A) + R+2(A) = (A) +-------------------------------------------------------------------------------------------------- +Atom A R-2(A) R-1(A) R0(A) R+1(A) R+2(A) +-------------------------------------------------------------------------------------------------- +H1 2.6620712484E+00 1.2151247030E+00 1.0000000266E+00 1.1930998741E+00 1.8889674434E+00 +H2 2.6620712484E+00 1.2151247030E+00 1.0000000266E+00 1.1930998741E+00 1.8889674434E+00 + +Atomic Radial Distortion Moments: +-------------------------------- + Dot = x*(dRho/dx) + y*(dRho/dy) + z*(dRho/dz) + GR-2(A) = (A) + GR-1(A) = (A) + GR0(A) = (A) + GR+1(A) = (A) + GR+2(A) = (A) +-------------------------------------------------------------------------------------------------- +Atom A GR-2(A) GR-1(A) GR0(A) GR+1(A) GR+2(A) +-------------------------------------------------------------------------------------------------- +H1 -2.2137234293E+00 -1.9794513704E+00 -2.4988077744E+00 -4.1362056883E+00 -8.4947898974E+00 +H2 -2.2137234293E+00 -1.9794513704E+00 -2.4988077744E+00 -4.1362056883E+00 -8.4947898974E+00 + +Atomic Electronic Spin Populations: +---------------------------------- + N_alpha(A) = Average number of Alpha electrons in Atom A + N_beta(A) = Average number of Beta electrons in Atom A + N_total(A) = N_alpha(A) + N_beta(A) + N_spin(A) = N_alpha(A) - N_beta(A) +-------------------------------------------------------------------------------- +Atom A N_alpha(A) N_beta(A) N_total(A) N_spin(A) +-------------------------------------------------------------------------------- +H1 5.0000001328E-01 5.0000001328E-01 1.0000000266E+00 0.0000000000E+00 +H2 5.0000001328E-01 5.0000001328E-01 1.0000000266E+00 0.0000000000E+00 +-------------------------------------------------------------------------------- +Total 1.0000000266E+00 1.0000000266E+00 2.0000000532E+00 0.0000000000E+00 + + +2EDM Note: +--------- +For post-HF, natural orbital "wavefunctions" the Muller approximation +of the two-electron density matrix (2EDM) in terms of natural orbitals +of the one-electron density matrix (1EDM) is used to calculate 2EDM- +dependent properties (i.e., Vee contributions and electronic localization +and delocalization properties). For HF single-determinant wavefunctions the +expression used for the 2EDM is exact. + +DFT Note: +-------- +VeeX represents the exchange-correlation functional for the wavefunction's +underlying model. For Hartree-Fock wavefunctions, VeeX is the two-electron +Hartree-Fock exchange functional. For wavefunctions of supported DFT models +(LSDA, B3LYP, M062X, PBE and PBE0), VeeX is the exchange-correlation functional +of the corresponding DFT model and atomic contributions VeeX(A) to VeeX are +explicitly calculated and unambiguous. However, since VeeX is at least partly +just a one-electron functional for DFT models, the partitioning of VeeX(A) +into interatomic (VeeX(A,B) and VeeX(A,A')) and intraatomic (VeeX(A,A)) +contributions is ambiguous. Currently, interatomic contributions VeeX(A,B) +and VeeX(A,A') are calculated using the Hartree-Fock exchange functional while +the intratomic contribution VeeX(A,A) is calculated as VeeX(A) - VeeX(A,A'). +For wavefunctions of non-supported DFT models, VeeX is (incorrectly) assumed +to be the Hartree-Fock exchange functional and the atomic energies E_IQA(A) +will not be correct and will not sum to the correct molecular energy. + +Total time for AIMSum = 0 sec (NProc = 1) diff --git a/tests/parsers/fixtures/aimall.gaussianwfx/default/aiida_atomicfiles/h1.inp b/tests/parsers/fixtures/aimall.gaussianwfx/default/aiida_atomicfiles/h1.inp new file mode 100644 index 0000000..5909df9 --- /dev/null +++ b/tests/parsers/fixtures/aimall.gaussianwfx/default/aiida_atomicfiles/h1.inp @@ -0,0 +1,11 @@ + Title Card Required +H1 +Auto +Critical Point Data + 1 0 0 + 4.25140469099550E-17 0.00000000000000E+00 1.56271704054169E-17 H2 +0 0 +Options +Integer 1 +42 1 +Real 0 diff --git a/tests/parsers/fixtures/aimall.gaussianwfx/default/aiida_atomicfiles/h1.int b/tests/parsers/fixtures/aimall.gaussianwfx/default/aiida_atomicfiles/h1.int new file mode 100644 index 0000000..63f9313 --- /dev/null +++ b/tests/parsers/fixtures/aimall.gaussianwfx/default/aiida_atomicfiles/h1.int @@ -0,0 +1,492 @@ + AIMInt (Version 19.10.12, Professional) + Portions Copyright (c) 1997-2019 by Todd A. Keith + AIMInt is a component of the AIMAll package ( http://aim.tkgristmill.com ) + + TP: 64-bit Mac OS X + + AIMInt is a heavily modified and extended version of the PROAIMV program + developed by members of R.F.W. Bader's research group + + Much of the Quantum Theory of Atoms in Molecules (QTAIM) is described in the book: + "Atoms in Molecules - A Quantum Theory" + R.F.W. Bader, Oxford University Press, Oxford, 1990 + + For additional references see: http://aim.tkgristmill.com/references.html + + Current Directory: /Users/chemlab/Desktop/junkCalculations + + Inp File: h2_opt_atomicfiles/h1.inp + Wfx File: h2_opt.wfx + Out File: h2_opt_atomicfiles/h1.int + + Wfx Title: Title Card Required + Job Title: Title Card Required + + The value of -V/T from the wfx file = 2.0018506120E+00 + The molecular energy from the wfx file = -1.1229598375E+00 + The Proaim surface algorithm will be used. + The critical points in the atomic surface: + 1 BCP (Bond) 4.2514046910E-17 0.0000000000E+00 1.5627170405E-17 H2 + Optional parameters read from input. + +Model: Restricted SCF + + Restricted, closed-shell, single-determinant wavefunction. + Number of electrons (from MO Occs) = 2.0000000000 + Number of Alpha electrons (from MO Occs) = 1.0000000000 + Number of Beta electrons (from MO Occs) = 1.0000000000 + Number of electron pairs (N*(N-1)/2) = 1.0000000000 + Number of electron pairs (from Muller 2EDM) = 1.0000000000 + + Integration is over atom H1 + MPts_ESP = 132 + Number of processors used for job = 1 + Dynamic cutoffs will be used throughout. + The cutoff value to be used is 1.00E-13 + Pre-integration cutoffs will be used. + Number of primitives read from wavefunction = 6 + Number of unique primitives before cutoffs is 6 + The number of primitives to be used outside Beta sphere is 6 + The number of primitives to be used inside Beta sphere is 6 + The number of contracted basis functions to be used outside Beta sphere is 0(MaxLen= 0) + The number of uncontracted basis functions to be used outside Beta sphere is 6 + The number of contracted basis functions to be used inside Beta sphere is 0(MaxLen= 0) + The number of uncontracted basis functions to be used inside Beta sphere is 6 + Time spent trimming wavefunction = 0 sec + Using MO basis. + Number of recalcs: BIM = 0, OAQ = 0 + Total memory allocated for AIMInt = 5.097 Megabytes + Doing Beta sphere integration ... + The radius of the Beta sphere is 5.9430707596E-01 + The Beta sphere integration will be done in 1 shells. + Using default number of radial and angular points for Beta sphere shells. + The outer radius of shell 1 is 5.9430707596E-01 with 74 radial points. + Using 266 Lebedev grid points for angular integration of shell 1 + Shell 1 of Beta sphere integration is done. + Beta sphere integration is done. + Using Proaim surface algorithm. + Will search for first through fifth intersections in Proaim surface algorithm. + Using 83 initial gradrho trajectories per interatomic surface. + Maximum path length of a gradrho surface trajectory = 1.5000000000E+01 + Using 600 triangulation points per gradrho surface trajectory. + Distance between adjacent triangulation points on gradrho surface trajectories = 2.5000000000E-02 + Maximum distance between adjacent surface trajectories = 3.0000000000E-01 + Density cutoff for "infinite" surface trajectories = 1.0000000000E-10 + Surface trajectory micro insertion limit = 167 + Number of 0th order integration rays = 985 + Number of 1st order integration rays = 815 + Number of 2nd order integration rays = 0 + Number of 3rd order integration rays = 0 + Number of 4th order integration rays = 0 + Number of 5th order integration rays = 0 + Surface trajectory micro insertion limit reached 0 times for interatomic surface 1 + Number of inserted trajectories = 83 for interatomic surface 1 + Maximum actual density at "infinite" end of a surface trajectory = 1.0999680191E-10 + Maximum path length at "infinite" end of a surface trajectory = 7.2750000000E+00 + Maximum distance from nucleus at "infinite" end of a surface trajectory = 7.2856584168E+00 + Minimum path length at "infinite" end of a surface trajectory = 7.2750000000E+00 + Minimum distance from nucleus at "infinite" end of a surface trajectory = 7.2856584168E+00 + Minimum distance from nucleus to IAS = 6.9430707596E-01 + Maximum actual density at an "EZG" point of a surface trajectory = 0.0000000000E+00 + Total number of surface trajectory walks = 168 + The total number of inserted trajectories = 83 + Atomic surface calculation is done. + Doing integration outside of Beta sphere ... + Integrating out to 1.3000000000E+01 from the nucleus for infinite rays. + Electron density isosurface value for volume 1 = 1.0000000000E-03 + Electron density isosurface value for volume 2 = 2.0000000000E-03 + Electron density isosurface value for volume 3 = 4.0000000000E-04 + Using 1800 GS grid points for angular integration outside Beta sphere. + Rotating grid: 0.000000 0.000000 0.000000 + Using Gauss-Legendre method for radial integration outside Beta sphere. + Using default number of radial points outside of Beta sphere. + Integration outside of Beta sphere is done. +Calculating properties of atomic isodensity surfaces + + Error measures of the basin integration: + (1/4) = -8.2259696833E-09 + (1/4) = -9.3264270734E-09 + (1/4) = -7.2870853351E-10 + + Results of the basin integration: + N = 1.0000000266E+00 q = -2.6550100118E-08 = Net Charge + G = 5.6044276300E-01 + K = 5.6044277123E-01 K_Scaled = -5.6147993334E-01 = (1+V(Mol)/T(Mol))*K + L = 8.2259696833E-09 + WeizKE = 5.6044100221E-01 + TFKE = 4.9092834610E-01 + <|L|> ~ 6.7234854044E-01 <|L+|> ~ 3.3617427433E-01 <|L-|> ~ -3.3617426611E-01 + I = 1.9601638906E+00 + = 2.6620712484E+00 + = 1.2151247030E+00 + = 1.1930998741E+00 + = 1.8889674434E+00 + = 8.7683248635E+00 + GR(-2) = -2.2137234293E+00 + GR(-1) = -1.9794513704E+00 + GR0 = -2.4988077744E+00 + GR1 = -4.1362056883E+00 + GR2 = -8.4947898974E+00 + VenO = -1.2151247030E+00 VenO_Scaled = -1.2162480258E+00 = 2*(1+T(Mol)/V(Mol))*VenO + VenT = -1.8093034930E+00 VenT_Scaled = -1.8109761047E+00 = 2*(1+T(Mol)/V(Mol))*VenT + Dipole X = 5.9457185814E-06 5.9457185814E-06 0.0000000000E+00 5.9457185814E-06 + Dipole Y = -2.8816560329E-06 -2.8816560329E-06 0.0000000000E+00 -2.8816560329E-06 + Dipole Z = -1.2778860188E-01 -8.2209569627E-01 6.9430707596E-01 -1.2778862031E-01 + |Dipole| = 1.2778860205E-01 + + Atomic Traceless Quadrupole Moment Tensor Q: + QXX = -3.3499920162E-01 + QXY = -3.5364038771E-07 + QXZ = 2.7264206717E-05 + QYY = -3.3500176992E-01 + QYZ = -1.4913017770E-05 + QZZ = 6.7000097154E-01 + + Eigenvalues of Atomic Traceless Quadrupole Moment Tensor: + -3.3500181785E-01 -3.3499915466E-01 6.7000097250E-01 + + Eigenvectors of Atomic Traceless Quadrupole Moment Tensor: + 1.3384052347E-01 9.9100288271E-01 2.7128564405E-05 + 9.9100288302E-01 -1.3384052310E-01 -1.4838792701E-05 + 1.1074385092E-05 -2.8870517321E-05 9.9999999952E-01 + + Electrostatic Forces on Nuclei by Atomic Electron Distribution: + FrcAAX = -5.0388751816E-06 + FrcAAY = 1.6873894759E-06 + FrcAAZ = -1.1615918568E-01 + FrcBAX = -1.4989747122E-06 + FrcBAY = 1.4065628234E-07 + FrcBAZ = 3.3147205412E-01 + + Electrostatic Energy and Force between Total Atomic Charge Distribution and Nuclei: + 1 -1.2151247030E+00 -5.0388751810E-06 1.6873894760E-06 -1.1615918568E-01 + 2 1.2596366187E-01 -1.4989747122E-06 1.4065628236E-07 -1.8713309680E-01 + Total -1.0891610412E+00 -6.5378498932E-06 1.8280457583E-06 -3.0329228248E-01 + + Electrostatic Energy and Force between Atomic Electron Distribution and Nuclei: + 1 -1.2151247030E+00 -5.0388751810E-06 1.6873894760E-06 -1.1615918568E-01 + 2 -5.9417878996E-01 -1.4989747123E-06 1.4065628236E-07 3.3147205412E-01 + Total -1.8093034930E+00 -6.5378498933E-06 1.8280457583E-06 2.1531286844E-01 + + Electrostatic Energy and Force between Atomic Nucleus and Nuclei: + 1 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 2 7.2014245182E-01 3.1755406905E-17 0.0000000000E+00 -5.1860515092E-01 + Total 7.2014245182E-01 3.1755406905E-17 0.0000000000E+00 -5.1860515092E-01 + + = 7.5105987607E-02 + Vol1(0.001) = 6.1290631525E+01 + Vol2(0.002) = 4.4379295922E+01 + Vol3(0.0004) = 8.7997833405E+01 + N(Vol1) = 9.6880942649E-01 + N(Vol2) = 9.4461808928E-01 + N(Vol3) = 9.8613798749E-01 + d(Vol1) = 1.5806810966E-02 = N(Vol1)/Vol1 + d(Vol2) = 2.1285107608E-02 = N(Vol2)/Vol2 + d(Vol3) = 1.1206389400E-02 = N(Vol3)/Vol3 + Minimum distance from nucleus to 0.001 electron density isosurface in atom ~ 2.60 + Minimum distance from nucleus to 0.002 electron density isosurface in atom ~ 2.28 + Minimum distance from nucleus to 0.0004 electron density isosurface in atom ~ 3.03 + Maximum distance reached from nucleus = 1.2998693878E+01 + Integration volume = 5.0749039232E+03 + Maximum electron density at an "infinite" integration point ~ 4.4034415484E-28 + +Basin Integral of GradRho = 1.0025723717E-05 -4.4055717947E-06 -7.2185960420E-01 + + Cartesian Moments of the Electronic Charge Density Distribution (Nuclear Origin): + -------------------------------------------------------------------------------- + - = -1.0000000266E+00 + - = 5.9457185814E-06 + - = -2.8816560329E-06 + - = -1.2778860188E-01 + - = -7.4132221501E-01 + - = -1.1788012923E-07 + - = 9.0880689056E-06 + - = -7.4132307111E-01 + - = -4.9710059235E-06 + - = -4.0632215729E-01 + - = -1.0099014017E-07 + - = -3.5237533086E-08 + - = -1.6564179544E-01 + - = 7.1893271781E-08 + - = -2.2003946678E-07 + - = 1.9688232965E-05 + - = 2.5160512723E-08 + - = -1.6564351147E-01 + - = -1.0276609564E-05 + - = -4.4888070649E-01 + - = -2.3230263822E+00 + - = 1.8458717172E-09 + - = -2.4231090393E-07 + - = -7.7434212877E-01 + - = -8.7280521583E-08 + - = -4.0511271963E-01 + - = -9.8029636314E-10 + - = 1.7250409479E-07 + - = -5.5117760936E-07 + - = 4.6746611374E-05 + - = -2.3230263876E+00 + - = 5.8428539300E-08 + - = -4.0511688443E-01 + - = -2.4702193777E-05 + - = -9.5312862804E-01 + - = -8.7339281245E-09 + - = -2.2168150610E-08 + - = -6.5761690146E-01 + - = -3.8665848798E-09 + - = 1.2102366020E-08 + - = -6.5865235975E-07 + - = 1.2580765479E-08 + - = -2.1920563583E-01 + - = -2.3769094728E-07 + - = -5.4406842729E-01 + - = 2.4493418678E-08 + - = 1.1859742238E-08 + - = 4.6886873920E-07 + - = -1.4959421158E-06 + - = 1.2773031728E-04 + - = 6.7285334052E-08 + - = -6.5761691049E-01 + - = 1.6257292025E-07 + - = -5.4407972440E-01 + - = -6.7166114293E-05 + - = -2.0707251372E+00 + + Real Spherical Harmonic Moments Q[l,|m|,?] of the Electronic Charge Density Distribution (Nuclear Origin): + Condon-Shortly phase, (-1)**|m|, included + Normalization factor, SqRt((2*l+1)/(4*pi)), not included + --------------------------------------------------------------------------------------------------------- + Q[0,0] = -1.0000000266E+00 + Q[1,0] = -1.2778860188E-01 + Q[1,1,c] = 5.9457185814E-06 + Q[1,1,s] = -2.8816560329E-06 + Q[2,0] = 3.3500048577E-01 + Q[2,1,c] = 1.5740997087E-05 + Q[2,1,s] = -8.6100348242E-06 + Q[2,2,c] = 7.4140308655E-07 + Q[2,2,s] = -2.0417437304E-07 + Q[3,0] = 4.8047253873E-02 + Q[3,1,c] = 4.8243942821E-05 + Q[3,1,s] = -2.5166278828E-05 + Q[3,2,c] = 3.3230861781E-06 + Q[3,2,s] = -8.5220919034E-07 + Q[3,3,c] = -2.5034958148E-07 + Q[3,3,s] = -1.0346427971E-07 + Q[4,0] = -8.4546620110E-01 + Q[4,1,c] = 1.4799132622E-04 + Q[4,1,s] = -7.8046767054E-05 + Q[4,2,c] = 1.3966120204E-05 + Q[4,2,s] = -3.6983795492E-06 + Q[4,3,c] = -1.5892842219E-06 + Q[4,3,s] = -6.6989298435E-07 + Q[4,4,c] = 2.0530170235E-09 + Q[4,4,s] = 8.3599178441E-09 + Q[5,0] = 8.1931089490E-02 + Q[5,1,c] = 4.9580382054E-04 + Q[5,1,s] = -2.5966282225E-04 + Q[5,2,c] = 5.7857269170E-05 + Q[5,2,s] = -1.5451614481E-05 + Q[5,3,c] = -8.6006494243E-06 + Q[5,3,s] = -3.6062859580E-06 + Q[5,4,c] = 6.7661962041E-09 + Q[5,4,s] = 2.1530725057E-09 + Q[5,5,c] = 1.0691716671E-07 + Q[5,5,s] = -1.1881848396E-07 + +Molecular Orbital (MO) Data: +--------------------------- + MO# i = ith MO in AIMAll (internal and output) order + WMO#(i) = MO# i in wavefunction file order + Occ_MO(i) = Occupancy of ith MO for Molecule + Spin_MO(i) = Spin Type of ith MO + Occ_MO(A,i) = Contribution of Atom A to Occ_MO(i) + %Occ_MO(A,i) = 100 * Occ_MO(A,i) / Occ_MO(i) + %N_MO(A,i) = 100 * Occ_MO(A,i) / N(A) +--------------------------------------------------------------------------------------------------- + MO# i WMO#(i) Occ_MO(i) Spin_MO(i) Occ_MO(A,i) %Occ_MO(A,i) %N_MO(A,i) +--------------------------------------------------------------------------------------------------- + 1 1 2.0000000000 Alpha,Beta 1.0000000266 50.0000013275 100.0000000000 + + The Atomic Overlap Matrix: + + Restricted, closed-shell, single-determinant wavefunction. + + 0.5000000133 + + Electronic Localization Properties from Atomic Overlap Matrix (see "2EDM Note"): + ------------------------------------------------------------------------------- + Alpha electrons (NAlpha) = 5.0000001328E-01 + Beta electrons (NBeta) = 5.0000001328E-01 + Total electrons (N) = 1.0000000266E+00 + Alpha Fermi correlation (FOOAlpha) = -2.5000001328E-01 + Beta Fermi correlation (FOOBeta) = -2.5000001328E-01 + Total Fermi correlation (FOO) = -5.0000002655E-01 + Alpha fluctuation (FLAlpha) = 2.5000000000E-01 + Beta fluctuation (FLBeta) = 2.5000000000E-01 + Total fluctuation (FL) = 5.0000000000E-01 + Alpha localization index (LIAlpha) = 2.5000001328E-01 + Beta localization index (LIBeta) = 2.5000001328E-01 + Total localization index (LI) = 5.0000002655E-01 + Alpha % localization (%LocAlpha) = 5.0000001328E+01 ( 2.5000000664E+01) + Beta % localization (%LocBeta) = 5.0000001328E+01 ( 2.5000000664E+01) + Total % localization (%Loc) = 5.0000001328E+01 + Alpha delocalization index (DIAlpha(A,A')/2) = 2.5000000000E-01 + Beta delocalization index (DIBeta(A,A')/2) = 2.5000000000E-01 + Total delocalization index (DI(A,A')/2) = 5.0000000000E-01 + Alpha % delocalization (%DelocAlpha) = 4.9999998672E+01 ( 2.4999999336E+01) + Beta % delocalization (%DelocBeta) = 4.9999998672E+01 ( 2.4999999336E+01) + Total % delocalization (%Deloc) = 4.9999998672E+01 + D2(A,A) = 2.5000001328E-01 + D2(A,A') = 2.5000000000E-01 + D2(A,Mol) = 5.0000001328E-01 + + Electronic Spin Properties: + -------------------------- + N_alpha = 5.0000001328E-01 + N_beta = 5.0000001328E-01 + N_total = 1.0000000266E+00 + N_spin = 0.0000000000E+00 + Mu_Intra_X_alpha = 2.9728592907E-06 + Mu_Intra_X_beta = 2.9728592907E-06 + Mu_Intra_X_total = 5.9457185814E-06 + Mu_Intra_X_spin = 0.0000000000E+00 + Mu_Intra_Y_alpha = -1.4408280164E-06 + Mu_Intra_Y_beta = -1.4408280164E-06 + Mu_Intra_Y_total = -2.8816560329E-06 + Mu_Intra_Y_spin = 0.0000000000E+00 + Mu_Intra_Z_alpha = -6.3894300940E-02 + Mu_Intra_Z_beta = -6.3894300940E-02 + Mu_Intra_Z_total = -1.2778860188E-01 + Mu_Intra_Z_spin = 0.0000000000E+00 + |Mu_Intra_alpha| = 6.3894301025E-02 + |Mu_Intra_beta| = 6.3894301025E-02 + |Mu_Intra_total| = 1.2778860205E-01 + |Mu_Intra_spin| = 0.0000000000E+00 + G_alpha = 2.8022138150E-01 + G_beta = 2.8022138150E-01 + G_total = 5.6044276300E-01 + G_spin = 0.0000000000E+00 + K_alpha = 2.8022138561E-01 + K_beta = 2.8022138561E-01 + K_total = 5.6044277123E-01 + K_spin = 0.0000000000E+00 + L_alpha = 4.1129848416E-09 + L_beta = 4.1129848416E-09 + L_total = 8.2259696833E-09 + L_spin = 0.0000000000E+00 + +Interatomic Surface Properties: +------------------------------ +Interatomic Surface 1: H1 H2 + Area(0.001) = 2.7845139783E+01 + Area(0.002) = 2.2306460218E+01 + Area(0.0004) = 3.5829161590E+01 + Full Integration Area = 1.6634530406E+02 + Surface Integral of Rho(r) = 7.2188590112E-01 + Flux of GradRho = 5.2766918323E-16 + Surface Integral of G(r) = 2.9497448067E-01 + Surface Integral of K(r) = 2.7188719562E-01 + Surface Integral of L(r) = -2.3087285052E-02 + Surface Integral of DelSqRho(r) = 9.2349140209E-02 + Surface Integral of V(r) = -5.6686167629E-01 +Interatomic Surfaces Total + Area(0.001) = 2.7845139783E+01 + Area(0.002) = 2.2306460218E+01 + Area(0.0004) = 3.5829161590E+01 + Full Integration Area = 1.6634530406E+02 + Surface Integral of Rho(r) = 7.2188590112E-01 + Flux of GradRho = 5.2766918323E-16 + Surface Integral of G(r) = 2.9497448067E-01 + Surface Integral of K(r) = 2.7188719562E-01 + Surface Integral of L(r) = -2.3087285052E-02 + Surface Integral of DelSqRho(r) = 9.2349140209E-02 + Surface Integral of V(r) = -5.6686167629E-01 + Validation = 5.0121048918E-01 5.0119230520E-01 + +0.001 Atomic IsoDensity Surface Properties: +------------------------------------------ +Area = 5.9837040043E+01 +Surface Integral of ESP = 1.3408875466E-01 +Maximum ESP = 1.1988079555E-02 +Minimum ESP = -3.4140821745E-03 +Average ESP = 2.2408988574E-03 +Mean Absolute Deviation of ESP = 4.1364697352E-03 +Variance of ESP = 2.2523574101E-05 +Surface Integral of |ESP| = 2.4903182368E-01 +Surface Integral of ESP*ESP = 1.6482233425E-03 +Area_ESP+ = 3.4304892464E+01 +Surface Integral of ESP+ = 1.9156028917E-01 +Maximum ESP+ = 1.1988079555E-02 +Minimum ESP+ = 1.3796512573E-05 +Average ESP+ = 5.5840515860E-03 +Mean Absolute Deviation of ESP+ = 3.0465632487E-03 +Variance of ESP+ = 1.2308492518E-05 +Surface Integral of |ESP+| = 1.9156028917E-01 +Surface Integral of ESP+*ESP+ = 1.4919240488E-03 +Area_ESP- = 2.5532147579E+01 +Surface Integral of ESP- = -5.7471534508E-02 +Maximum ESP- = -2.9916170041E-07 +Minimum ESP- = -3.4140821745E-03 +Average ESP- = -2.2509479209E-03 +Mean Absolute Deviation of ESP- = 8.8644545561E-04 +Variance of ESP- = 1.0549000040E-06 +Surface Integral of |ESP-| = 5.7471534508E-02 +Surface Integral of ESP-*ESP- = 1.5629929369E-04 + +0.002 Atomic IsoDensity Surface Properties: +------------------------------------------ +Area = 4.8195209814E+01 + +0.0004 Atomic IsoDensity Surface Properties: +------------------------------------------- +Area = 7.5992758513E+01 + + Virial-Based Energy Components (see "2EDM Note"): + ------------------------------------------------ + Ee(A) = E(A) - W(A) = -5.6044277123E-01 + T(A) = 5.6044277123E-01 + Ven(A) = -1.8093034930E+00 + Ven(A,A) = VenO(A) = -1.2151247030E+00 + Ven(A,A') = -5.9417878996E-01 + +IQA Energy Components (see "2EDM Note"): +--------------------------------------- +T(A) = 5.6044277123E-01 +Vneen(A,A)/2 = Vne(A,A) = -1.2151247030E+00 +Vne(A,Mol)/2 = -9.0465171529E-01 +Ven(A,Mol)/2 = -9.0465174649E-01 +Vneen(A,Mol)/2 = -1.8093034618E+00 +Vne(A,A')/2 = -2.9708936377E-01 +Ven(A,A')/2 = -2.9708939498E-01 +Vneen(A,A')/2 = -5.9417875875E-01 +Vnn(A,Mol)/2 = 3.6007122591E-01 + +2EDM Note: +--------- +For post-HF, natural orbital "wavefunctions" the Muller approximation +of the two-electron density matrix (2EDM) in terms of natural orbitals +of the one-electron density matrix (1EDM) is used to calculate 2EDM- +dependent properties (i.e., Vee contributions and electronic localization +and delocalization properties). For HF single-determinant wavefunctions the +expression used for the 2EDM is exact. 2EDM-dependent properties are +calculated with spin-orbital "self-interaction" terms included. + +DFT Note: +-------- +VeeX represents the exchange-correlation functional for the wavefunction's +underlying model. For Hartree-Fock wavefunctions, VeeX is the two-electron +Hartree-Fock exchange functional. For wavefunctions of supported DFT models +(LSDA, B3LYP, M062X, PBE and PBE0), VeeX is the exchange-correlation functional +of the corresponding DFT model and atomic contributions VeeX(A) to VeeX are +explicitly calculated and unambiguous. However, since VeeX is at least partly +just a one-electron functional for DFT models, the partitioning of VeeX(A) +into interatomic (VeeX(A,B) and VeeX(A,A')) and intraatomic (VeeX(A,A)) +contributions is ambiguous. Currently, interatomic contributions VeeX(A,B) +and VeeX(A,A') are calculated using the Hartree-Fock exchange functional while +the intratomic contribution VeeX(A,A) is calculated as VeeX(A) - VeeX(A,A'). +For wavefunctions of non-supported DFT models, VeeX is (incorrectly) assumed +to be the Hartree-Fock exchange functional and the atomic energies E_IQA(A) +will not be correct and will not sum to the correct molecular energy. + + Total time = 1 sec + + AIMInt is Done. diff --git a/tests/parsers/fixtures/aimall.gaussianwfx/default/aiida_atomicfiles/h2.inp b/tests/parsers/fixtures/aimall.gaussianwfx/default/aiida_atomicfiles/h2.inp new file mode 100644 index 0000000..1af26af --- /dev/null +++ b/tests/parsers/fixtures/aimall.gaussianwfx/default/aiida_atomicfiles/h2.inp @@ -0,0 +1,11 @@ + Title Card Required +H2 +Auto +Critical Point Data + 1 0 0 + 4.25140469099550E-17 0.00000000000000E+00 1.56271704054169E-17 H1 +0 0 +Options +Integer 1 +42 1 +Real 0 diff --git a/tests/parsers/fixtures/aimall.gaussianwfx/default/aiida_atomicfiles/h2.int b/tests/parsers/fixtures/aimall.gaussianwfx/default/aiida_atomicfiles/h2.int new file mode 100644 index 0000000..260fa9c --- /dev/null +++ b/tests/parsers/fixtures/aimall.gaussianwfx/default/aiida_atomicfiles/h2.int @@ -0,0 +1,492 @@ + AIMInt (Version 19.10.12, Professional) + Portions Copyright (c) 1997-2019 by Todd A. Keith + AIMInt is a component of the AIMAll package ( http://aim.tkgristmill.com ) + + TP: 64-bit Mac OS X + + AIMInt is a heavily modified and extended version of the PROAIMV program + developed by members of R.F.W. Bader's research group + + Much of the Quantum Theory of Atoms in Molecules (QTAIM) is described in the book: + "Atoms in Molecules - A Quantum Theory" + R.F.W. Bader, Oxford University Press, Oxford, 1990 + + For additional references see: http://aim.tkgristmill.com/references.html + + Current Directory: /Users/chemlab/Desktop/junkCalculations + + Inp File: h2_opt_atomicfiles/h2.inp + Wfx File: h2_opt.wfx + Out File: h2_opt_atomicfiles/h2.int + + Wfx Title: Title Card Required + Job Title: Title Card Required + + The value of -V/T from the wfx file = 2.0018506120E+00 + The molecular energy from the wfx file = -1.1229598375E+00 + The Proaim surface algorithm will be used. + The critical points in the atomic surface: + 1 BCP (Bond) 4.2514046910E-17 0.0000000000E+00 1.5627170405E-17 H1 + Optional parameters read from input. + +Model: Restricted SCF + + Restricted, closed-shell, single-determinant wavefunction. + Number of electrons (from MO Occs) = 2.0000000000 + Number of Alpha electrons (from MO Occs) = 1.0000000000 + Number of Beta electrons (from MO Occs) = 1.0000000000 + Number of electron pairs (N*(N-1)/2) = 1.0000000000 + Number of electron pairs (from Muller 2EDM) = 1.0000000000 + + Integration is over atom H2 + MPts_ESP = 132 + Number of processors used for job = 1 + Dynamic cutoffs will be used throughout. + The cutoff value to be used is 1.00E-13 + Pre-integration cutoffs will be used. + Number of primitives read from wavefunction = 6 + Number of unique primitives before cutoffs is 6 + The number of primitives to be used outside Beta sphere is 6 + The number of primitives to be used inside Beta sphere is 6 + The number of contracted basis functions to be used outside Beta sphere is 0(MaxLen= 0) + The number of uncontracted basis functions to be used outside Beta sphere is 6 + The number of contracted basis functions to be used inside Beta sphere is 0(MaxLen= 0) + The number of uncontracted basis functions to be used inside Beta sphere is 6 + Time spent trimming wavefunction = 0 sec + Using MO basis. + Number of recalcs: BIM = 0, OAQ = 0 + Total memory allocated for AIMInt = 5.097 Megabytes + Doing Beta sphere integration ... + The radius of the Beta sphere is 5.9430707596E-01 + The Beta sphere integration will be done in 1 shells. + Using default number of radial and angular points for Beta sphere shells. + The outer radius of shell 1 is 5.9430707596E-01 with 74 radial points. + Using 266 Lebedev grid points for angular integration of shell 1 + Shell 1 of Beta sphere integration is done. + Beta sphere integration is done. + Using Proaim surface algorithm. + Will search for first through fifth intersections in Proaim surface algorithm. + Using 83 initial gradrho trajectories per interatomic surface. + Maximum path length of a gradrho surface trajectory = 1.5000000000E+01 + Using 600 triangulation points per gradrho surface trajectory. + Distance between adjacent triangulation points on gradrho surface trajectories = 2.5000000000E-02 + Maximum distance between adjacent surface trajectories = 3.0000000000E-01 + Density cutoff for "infinite" surface trajectories = 1.0000000000E-10 + Surface trajectory micro insertion limit = 167 + Number of 0th order integration rays = 985 + Number of 1st order integration rays = 815 + Number of 2nd order integration rays = 0 + Number of 3rd order integration rays = 0 + Number of 4th order integration rays = 0 + Number of 5th order integration rays = 0 + Surface trajectory micro insertion limit reached 0 times for interatomic surface 1 + Number of inserted trajectories = 83 for interatomic surface 1 + Maximum actual density at "infinite" end of a surface trajectory = 1.0999680191E-10 + Maximum path length at "infinite" end of a surface trajectory = 7.2750000000E+00 + Maximum distance from nucleus at "infinite" end of a surface trajectory = 7.2856584168E+00 + Minimum path length at "infinite" end of a surface trajectory = 7.2750000000E+00 + Minimum distance from nucleus at "infinite" end of a surface trajectory = 7.2856584168E+00 + Minimum distance from nucleus to IAS = 6.9430707596E-01 + Maximum actual density at an "EZG" point of a surface trajectory = 0.0000000000E+00 + Total number of surface trajectory walks = 168 + The total number of inserted trajectories = 83 + Atomic surface calculation is done. + Doing integration outside of Beta sphere ... + Integrating out to 1.3000000000E+01 from the nucleus for infinite rays. + Electron density isosurface value for volume 1 = 1.0000000000E-03 + Electron density isosurface value for volume 2 = 2.0000000000E-03 + Electron density isosurface value for volume 3 = 4.0000000000E-04 + Using 1800 GS grid points for angular integration outside Beta sphere. + Rotating grid: 0.000000 0.000000 0.000000 + Using Gauss-Legendre method for radial integration outside Beta sphere. + Using default number of radial points outside of Beta sphere. + Integration outside of Beta sphere is done. +Calculating properties of atomic isodensity surfaces + + Error measures of the basin integration: + (1/4) = -8.2259730849E-09 + (1/4) = -9.3264309308E-09 + (1/4) = -7.2873622574E-10 + + Results of the basin integration: + N = 1.0000000266E+00 q = -2.6550159404E-08 = Net Charge + G = 5.6044276300E-01 + K = 5.6044277123E-01 K_Scaled = -5.6147993334E-01 = (1+V(Mol)/T(Mol))*K + L = 8.2259730849E-09 + WeizKE = 5.6044100221E-01 + TFKE = 4.9092834610E-01 + <|L|> ~ 6.7234854044E-01 <|L+|> ~ 3.3617427433E-01 <|L-|> ~ -3.3617426611E-01 + I = 1.9601638906E+00 + = 2.6620712484E+00 + = 1.2151247030E+00 + = 1.1930998741E+00 + = 1.8889674434E+00 + = 8.7683248635E+00 + GR(-2) = -2.2137234293E+00 + GR(-1) = -1.9794513704E+00 + GR0 = -2.4988077744E+00 + GR1 = -4.1362056883E+00 + GR2 = -8.4947898974E+00 + VenO = -1.2151247030E+00 VenO_Scaled = -1.2162480258E+00 = 2*(1+T(Mol)/V(Mol))*VenO + VenT = -1.8093034930E+00 VenT_Scaled = -1.8109761047E+00 = 2*(1+T(Mol)/V(Mol))*VenT + Dipole X = 6.6001162780E-06 6.6001162779E-06 8.5028093820E-17 6.6001162780E-06 + Dipole Y = -3.0655514662E-07 -3.0655514662E-07 0.0000000000E+00 -3.0655514662E-07 + Dipole Z = 1.2778860188E-01 8.2209569627E-01 -6.9430707596E-01 1.2778862031E-01 + |Dipole| = 1.2778860205E-01 + + Atomic Traceless Quadrupole Moment Tensor Q: + QXX = -3.3499949031E-01 + QXY = -8.8495961250E-07 + QXZ = -3.1076155665E-05 + QYY = -3.3500148123E-01 + QYZ = -8.7269018483E-08 + QZZ = 6.7000097154E-01 + + Eigenvalues of Atomic Traceless Quadrupole Moment Tensor: + -3.3500181785E-01 -3.3499915466E-01 6.7000097250E-01 + + Eigenvectors of Atomic Traceless Quadrupole Moment Tensor: + 3.5552081997E-01 9.3466836130E-01 -3.0921533595E-05 + 9.3466836174E-01 -3.5552082014E-01 -8.6807404110E-08 + 1.1074385118E-05 2.8870517308E-05 9.9999999952E-01 + + Electrostatic Forces on Nuclei by Atomic Electron Distribution: + FrcAAX = -5.2331296542E-06 + FrcAAY = 9.2298448603E-07 + FrcAAZ = 1.1615918568E-01 + FrcBAX = -1.3842649618E-06 + FrcBAY = 5.9204720558E-07 + FrcBAZ = -3.3147205412E-01 + + Electrostatic Energy and Force between Total Atomic Charge Distribution and Nuclei: + 1 1.2596366187E-01 -1.3842649618E-06 5.9204720559E-07 1.8713309680E-01 + 2 -1.2151247030E+00 -5.2331296536E-06 9.2298448606E-07 1.1615918568E-01 + Total -1.0891610412E+00 -6.6173946154E-06 1.5150316916E-06 3.0329228248E-01 + + Electrostatic Energy and Force between Atomic Electron Distribution and Nuclei: + 1 -5.9417878996E-01 -1.3842649618E-06 5.9204720559E-07 -3.3147205412E-01 + 2 -1.2151247030E+00 -5.2331296536E-06 9.2298448606E-07 1.1615918568E-01 + Total -1.8093034930E+00 -6.6173946154E-06 1.5150316916E-06 -2.1531286844E-01 + + Electrostatic Energy and Force between Atomic Nucleus and Nuclei: + 1 7.2014245182E-01 -3.1755406905E-17 0.0000000000E+00 5.1860515092E-01 + 2 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + Total 7.2014245182E-01 -3.1755406905E-17 0.0000000000E+00 5.1860515092E-01 + + = 7.5105987607E-02 + Vol1(0.001) = 6.1290631525E+01 + Vol2(0.002) = 4.4379295922E+01 + Vol3(0.0004) = 8.7997833405E+01 + N(Vol1) = 9.6880942649E-01 + N(Vol2) = 9.4461808928E-01 + N(Vol3) = 9.8613798749E-01 + d(Vol1) = 1.5806810966E-02 = N(Vol1)/Vol1 + d(Vol2) = 2.1285107608E-02 = N(Vol2)/Vol2 + d(Vol3) = 1.1206389400E-02 = N(Vol3)/Vol3 + Minimum distance from nucleus to 0.001 electron density isosurface in atom ~ 2.60 + Minimum distance from nucleus to 0.002 electron density isosurface in atom ~ 2.28 + Minimum distance from nucleus to 0.0004 electron density isosurface in atom ~ 3.03 + Maximum distance reached from nucleus = 1.2998693878E+01 + Integration volume = 5.0749039232E+03 + Maximum electron density at an "infinite" integration point ~ 4.4034415484E-28 + +Basin Integral of GradRho = 1.0912664483E-05 -9.1539760110E-07 7.2185960420E-01 + + Cartesian Moments of the Electronic Charge Density Distribution (Nuclear Origin): + -------------------------------------------------------------------------------- + - = -1.0000000266E+00 + - = 6.6001162779E-06 + - = -3.0655514651E-07 + - = 1.2778860188E-01 + - = -7.4132231124E-01 + - = -2.9498653749E-07 + - = -1.0358718555E-05 + - = -7.4132297488E-01 + - = -2.9089672879E-08 + - = -4.0632215729E-01 + - = 1.0911479123E-08 + - = 8.7153478783E-08 + - = 1.6564200196E-01 + - = -3.1667240979E-08 + - = 6.0013713756E-07 + - = 2.2205821949E-05 + - = -6.4407658629E-08 + - = 1.6564330495E-01 + - = -3.6972012983E-07 + - = 4.4888070649E-01 + - = -2.3230263859E+00 + - = -1.1149035884E-09 + - = -2.9418198502E-08 + - = -7.7434212699E-01 + - = -2.1026422936E-07 + - = -4.0511320648E-01 + - = -1.6337582532E-09 + - = 7.6981286864E-08 + - = -1.4471977502E-06 + - = -5.2868411356E-05 + - = -2.3230263874E+00 + - = 1.5158561296E-07 + - = -4.0511639759E-01 + - = 6.1248098089E-07 + - = -9.5312862804E-01 + - = 1.4342197470E-08 + - = -6.8894568132E-09 + - = 6.5761692427E-01 + - = -8.5863837234E-09 + - = 8.7132960989E-09 + - = 8.0027234133E-08 + - = 1.1164225651E-08 + - = 2.1920563519E-01 + - = 5.7089336677E-07 + - = 5.4406974714E-01 + - = -2.3669289240E-08 + - = 8.1160632533E-09 + - = -2.1092279033E-07 + - = 3.9250856363E-06 + - = 1.4429991401E-04 + - = -8.1023132348E-08 + - = 6.5761688898E-01 + - = -4.1428272245E-07 + - = 5.4407840455E-01 + - = -1.9635876405E-06 + - = 2.0707251372E+00 + + Real Spherical Harmonic Moments Q[l,|m|,?] of the Electronic Charge Density Distribution (Nuclear Origin): + Condon-Shortly phase, (-1)**|m|, included + Normalization factor, SqRt((2*l+1)/(4*pi)), not included + --------------------------------------------------------------------------------------------------------- + Q[0,0] = -1.0000000266E+00 + Q[1,0] = 1.2778860188E-01 + Q[1,1,c] = 6.6001162781E-06 + Q[1,1,s] = -3.0655514663E-07 + Q[2,0] = 3.3500048577E-01 + Q[2,1,c] = -1.7941826839E-05 + Q[2,1,s] = -5.0384791388E-08 + Q[2,2,c] = 5.7472997227E-07 + Q[2,2,s] = -5.1093167047E-07 + Q[3,0] = -4.8047253873E-02 + Q[3,1,c] = 5.4405643350E-05 + Q[3,1,s] = -9.1955457956E-07 + Q[3,2,c] = -2.5232307688E-06 + Q[3,2,s] = 2.3243211392E-06 + Q[3,3,c] = 8.3731737504E-08 + Q[3,3,s] = 2.5762134915E-07 + Q[4,0] = -8.4546620110E-01 + Q[4,1,c] = -1.6729740193E-04 + Q[4,1,s] = 2.0760034824E-06 + Q[4,2,c] = 1.0702477416E-05 + Q[4,2,s] = -9.7050245413E-06 + Q[4,3,c] = -5.4458631821E-07 + Q[4,3,s] = -1.6364616252E-06 + Q[4,4,c] = -8.4703920665E-09 + Q[4,4,s] = 1.5347927801E-09 + Q[5,0] = -8.1931089490E-02 + Q[5,1,c] = 5.5961876911E-04 + Q[5,1,s] = -8.5465186395E-06 + Q[5,2,c] = -4.4446409145E-05 + Q[5,2,s] = 4.0133934459E-05 + Q[5,3,c] = 2.9282274762E-06 + Q[5,3,s] = 8.8544877712E-06 + Q[5,4,c] = 4.7252422730E-09 + Q[5,4,s] = 5.2999159127E-09 + Q[5,5,c] = -1.2726602916E-08 + Q[5,5,s] = -1.5933334046E-07 + +Molecular Orbital (MO) Data: +--------------------------- + MO# i = ith MO in AIMAll (internal and output) order + WMO#(i) = MO# i in wavefunction file order + Occ_MO(i) = Occupancy of ith MO for Molecule + Spin_MO(i) = Spin Type of ith MO + Occ_MO(A,i) = Contribution of Atom A to Occ_MO(i) + %Occ_MO(A,i) = 100 * Occ_MO(A,i) / Occ_MO(i) + %N_MO(A,i) = 100 * Occ_MO(A,i) / N(A) +--------------------------------------------------------------------------------------------------- + MO# i WMO#(i) Occ_MO(i) Spin_MO(i) Occ_MO(A,i) %Occ_MO(A,i) %N_MO(A,i) +--------------------------------------------------------------------------------------------------- + 1 1 2.0000000000 Alpha,Beta 1.0000000266 50.0000013275 100.0000000000 + + The Atomic Overlap Matrix: + + Restricted, closed-shell, single-determinant wavefunction. + + 0.5000000133 + + Electronic Localization Properties from Atomic Overlap Matrix (see "2EDM Note"): + ------------------------------------------------------------------------------- + Alpha electrons (NAlpha) = 5.0000001328E-01 + Beta electrons (NBeta) = 5.0000001328E-01 + Total electrons (N) = 1.0000000266E+00 + Alpha Fermi correlation (FOOAlpha) = -2.5000001328E-01 + Beta Fermi correlation (FOOBeta) = -2.5000001328E-01 + Total Fermi correlation (FOO) = -5.0000002655E-01 + Alpha fluctuation (FLAlpha) = 2.5000000000E-01 + Beta fluctuation (FLBeta) = 2.5000000000E-01 + Total fluctuation (FL) = 5.0000000000E-01 + Alpha localization index (LIAlpha) = 2.5000001328E-01 + Beta localization index (LIBeta) = 2.5000001328E-01 + Total localization index (LI) = 5.0000002655E-01 + Alpha % localization (%LocAlpha) = 5.0000001328E+01 ( 2.5000000664E+01) + Beta % localization (%LocBeta) = 5.0000001328E+01 ( 2.5000000664E+01) + Total % localization (%Loc) = 5.0000001328E+01 + Alpha delocalization index (DIAlpha(A,A')/2) = 2.5000000000E-01 + Beta delocalization index (DIBeta(A,A')/2) = 2.5000000000E-01 + Total delocalization index (DI(A,A')/2) = 5.0000000000E-01 + Alpha % delocalization (%DelocAlpha) = 4.9999998672E+01 ( 2.4999999336E+01) + Beta % delocalization (%DelocBeta) = 4.9999998672E+01 ( 2.4999999336E+01) + Total % delocalization (%Deloc) = 4.9999998672E+01 + D2(A,A) = 2.5000001328E-01 + D2(A,A') = 2.5000000000E-01 + D2(A,Mol) = 5.0000001328E-01 + + Electronic Spin Properties: + -------------------------- + N_alpha = 5.0000001328E-01 + N_beta = 5.0000001328E-01 + N_total = 1.0000000266E+00 + N_spin = 0.0000000000E+00 + Mu_Intra_X_alpha = 3.3000581390E-06 + Mu_Intra_X_beta = 3.3000581390E-06 + Mu_Intra_X_total = 6.6001162780E-06 + Mu_Intra_X_spin = 0.0000000000E+00 + Mu_Intra_Y_alpha = -1.5327757331E-07 + Mu_Intra_Y_beta = -1.5327757331E-07 + Mu_Intra_Y_total = -3.0655514662E-07 + Mu_Intra_Y_spin = 0.0000000000E+00 + Mu_Intra_Z_alpha = 6.3894300940E-02 + Mu_Intra_Z_beta = 6.3894300940E-02 + Mu_Intra_Z_total = 1.2778860188E-01 + Mu_Intra_Z_spin = 0.0000000000E+00 + |Mu_Intra_alpha| = 6.3894301025E-02 + |Mu_Intra_beta| = 6.3894301025E-02 + |Mu_Intra_total| = 1.2778860205E-01 + |Mu_Intra_spin| = 0.0000000000E+00 + G_alpha = 2.8022138150E-01 + G_beta = 2.8022138150E-01 + G_total = 5.6044276300E-01 + G_spin = 0.0000000000E+00 + K_alpha = 2.8022138561E-01 + K_beta = 2.8022138561E-01 + K_total = 5.6044277123E-01 + K_spin = 0.0000000000E+00 + L_alpha = 4.1129865425E-09 + L_beta = 4.1129865425E-09 + L_total = 8.2259730849E-09 + L_spin = 0.0000000000E+00 + +Interatomic Surface Properties: +------------------------------ +Interatomic Surface 1: H2 H1 + Area(0.001) = 2.7845139783E+01 + Area(0.002) = 2.2306460218E+01 + Area(0.0004) = 3.5829161590E+01 + Full Integration Area = 1.6634530406E+02 + Surface Integral of Rho(r) = 7.2188590112E-01 + Flux of GradRho = -5.2766918323E-16 + Surface Integral of G(r) = 2.9497448067E-01 + Surface Integral of K(r) = 2.7188719562E-01 + Surface Integral of L(r) = -2.3087285052E-02 + Surface Integral of DelSqRho(r) = 9.2349140209E-02 + Surface Integral of V(r) = -5.6686167629E-01 +Interatomic Surfaces Total + Area(0.001) = 2.7845139783E+01 + Area(0.002) = 2.2306460218E+01 + Area(0.0004) = 3.5829161590E+01 + Full Integration Area = 1.6634530406E+02 + Surface Integral of Rho(r) = 7.2188590112E-01 + Flux of GradRho = -5.2766918323E-16 + Surface Integral of G(r) = 2.9497448067E-01 + Surface Integral of K(r) = 2.7188719562E-01 + Surface Integral of L(r) = -2.3087285052E-02 + Surface Integral of DelSqRho(r) = 9.2349140209E-02 + Surface Integral of V(r) = -5.6686167629E-01 + Validation = 5.0121048918E-01 5.0119230520E-01 + +0.001 Atomic IsoDensity Surface Properties: +------------------------------------------ +Area = 5.9837040043E+01 +Surface Integral of ESP = 1.3408875466E-01 +Maximum ESP = 1.1988079555E-02 +Minimum ESP = -3.4140821745E-03 +Average ESP = 2.2408988574E-03 +Mean Absolute Deviation of ESP = 4.1364697352E-03 +Variance of ESP = 2.2523574101E-05 +Surface Integral of |ESP| = 2.4903182368E-01 +Surface Integral of ESP*ESP = 1.6482233425E-03 +Area_ESP+ = 3.4304892464E+01 +Surface Integral of ESP+ = 1.9156028917E-01 +Maximum ESP+ = 1.1988079555E-02 +Minimum ESP+ = 1.3796512573E-05 +Average ESP+ = 5.5840515860E-03 +Mean Absolute Deviation of ESP+ = 3.0465632487E-03 +Variance of ESP+ = 1.2308492518E-05 +Surface Integral of |ESP+| = 1.9156028917E-01 +Surface Integral of ESP+*ESP+ = 1.4919240488E-03 +Area_ESP- = 2.5532147579E+01 +Surface Integral of ESP- = -5.7471534508E-02 +Maximum ESP- = -2.9916170052E-07 +Minimum ESP- = -3.4140821745E-03 +Average ESP- = -2.2509479209E-03 +Mean Absolute Deviation of ESP- = 8.8644545561E-04 +Variance of ESP- = 1.0549000040E-06 +Surface Integral of |ESP-| = 5.7471534508E-02 +Surface Integral of ESP-*ESP- = 1.5629929369E-04 + +0.002 Atomic IsoDensity Surface Properties: +------------------------------------------ +Area = 4.8195209814E+01 + +0.0004 Atomic IsoDensity Surface Properties: +------------------------------------------- +Area = 7.5992758513E+01 + + Virial-Based Energy Components (see "2EDM Note"): + ------------------------------------------------ + Ee(A) = E(A) - W(A) = -5.6044277123E-01 + T(A) = 5.6044277123E-01 + Ven(A) = -1.8093034930E+00 + Ven(A,A) = VenO(A) = -1.2151247030E+00 + Ven(A,A') = -5.9417878996E-01 + +IQA Energy Components (see "2EDM Note"): +--------------------------------------- +T(A) = 5.6044277123E-01 +Vneen(A,A)/2 = Vne(A,A) = -1.2151247030E+00 +Vne(A,Mol)/2 = -9.0465171529E-01 +Ven(A,Mol)/2 = -9.0465174649E-01 +Vneen(A,Mol)/2 = -1.8093034618E+00 +Vne(A,A')/2 = -2.9708936377E-01 +Ven(A,A')/2 = -2.9708939498E-01 +Vneen(A,A')/2 = -5.9417875875E-01 +Vnn(A,Mol)/2 = 3.6007122591E-01 + +2EDM Note: +--------- +For post-HF, natural orbital "wavefunctions" the Muller approximation +of the two-electron density matrix (2EDM) in terms of natural orbitals +of the one-electron density matrix (1EDM) is used to calculate 2EDM- +dependent properties (i.e., Vee contributions and electronic localization +and delocalization properties). For HF single-determinant wavefunctions the +expression used for the 2EDM is exact. 2EDM-dependent properties are +calculated with spin-orbital "self-interaction" terms included. + +DFT Note: +-------- +VeeX represents the exchange-correlation functional for the wavefunction's +underlying model. For Hartree-Fock wavefunctions, VeeX is the two-electron +Hartree-Fock exchange functional. For wavefunctions of supported DFT models +(LSDA, B3LYP, M062X, PBE and PBE0), VeeX is the exchange-correlation functional +of the corresponding DFT model and atomic contributions VeeX(A) to VeeX are +explicitly calculated and unambiguous. However, since VeeX is at least partly +just a one-electron functional for DFT models, the partitioning of VeeX(A) +into interatomic (VeeX(A,B) and VeeX(A,A')) and intraatomic (VeeX(A,A)) +contributions is ambiguous. Currently, interatomic contributions VeeX(A,B) +and VeeX(A,A') are calculated using the Hartree-Fock exchange functional while +the intratomic contribution VeeX(A,A) is calculated as VeeX(A) - VeeX(A,A'). +For wavefunctions of non-supported DFT models, VeeX is (incorrectly) assumed +to be the Hartree-Fock exchange functional and the atomic energies E_IQA(A) +will not be correct and will not sum to the correct molecular energy. + + Total time = 1 sec + + AIMInt is Done. diff --git a/tests/parsers/test_aimqbbaseparser.py b/tests/parsers/test_aimqbbaseparser.py index ed7560a..2e4c895 100644 --- a/tests/parsers/test_aimqbbaseparser.py +++ b/tests/parsers/test_aimqbbaseparser.py @@ -6,7 +6,7 @@ import pytest # from aiida import orm -from aiida.common import AttributeDict +from aiida.common import AttributeDict, exceptions from aiida.orm import SinglefileData from aiida_aimall.data import AimqbParameters @@ -18,7 +18,7 @@ def generate_aimqb_inputs(): def _generate_aimqb_inputs(fixture_code, filepath_tests): """Return only those inputs the parser will expect to be there""" - parameters = AimqbParameters({"naat": 2, "nproc": 2}) + parameters = AimqbParameters({"naat": 2, "nproc": 2, "atlaprhocps": True}) inputs = { "code": fixture_code("aimall"), "parameters": parameters, @@ -73,3 +73,27 @@ def test_aimqb_parser_default( # pylint:disable=too-many-arguments results_dict = results["output_parameters"].get_dict() assert "atomic_properties" in results_dict assert "bcp_properties" in results_dict + + +def test_gaussiannode_returns_error( # pylint:disable=too-many-arguments + fixture_localhost, + generate_calc_job_node, + fixture_code, + filepath_tests, + generate_parser, + generate_aimqb_inputs, +): + """Test that a Gaussian node returns error on parser""" + entry_point_calc_job = "aimall.gaussianwfx" + entry_point_parser = "aimall.base" + name = "default" + node = generate_calc_job_node( + entry_point_calc_job, + fixture_localhost, + name, + generate_aimqb_inputs(fixture_code, filepath_tests), + ) + parser = generate_parser(entry_point_parser) + with pytest.raises(exceptions.ParsingError) as excinfo: + parser.parse_from_node(node, store_provenance=False) + assert str(excinfo.value) == "Can only parse AimqbCalculation"