forked from ucsb-bren/ESM296-3W-2016
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsgriff.Rmd
716 lines (525 loc) · 15.4 KB
/
sgriff.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
---
title: "sgriff"
author: "Stephanie Griffin"
date: "January 19, 2016"
output:
html_document:
toc: true
toc_depth: 2
---
{
"program": "student",
"interests": "water supply, food security",
"project": "Pollution",
"organization": "pollute"
}
```{r}
# set working directory if has child directory
dir_child = 'students'
if (dir_child %in% list.files()){
if (interactive()) {
# R Console
setwd(dir_child)
} else {
# knitting
knitr::opts_knit$set(root.dir=dir_child)
}
}
```
## **Content**
+ My [GP](www2.bren.ucsb.edu/~sbwater) focuses on local water supply sustainability.
+ My personal interests (not at Bren) include food and water security. How can we best manage our water, soil, and financial resources to provide for the basic needs of people, especially where climate change is happening?
## **Techniques**
Becoming more comfortable with *programming* and *data imaging* will help our GP produce more presentable infographics of our findings.
## **Data**
Data for the GP has largely been collected from local water agencies and the county (historical and projected data include metered sales, water supply by source, energy requirements by source, and costs).
![](images/bbest_cool-idea.png)
```{r}
s = read.csv('data/sgriff_loadyields.tsv') #sgriff_loadyields indicates annual N & P flux in states' waters (in kg/yr/km^2)
# output summary
summary(s)
```
#########################################
#Data Wrangling:
```{r}
library(readr)
library(dplyr)
library(tidyr)
library(stringr)
read.csv('sgriff_loadyields.csv')
#limit columns to just state and nitrogen
#limit rows to states with nitrogen levels >= 1000 kg/yr/km^2
#get number of states with N >= 1000 kg/yr/km^2
#get list of states with N >= 1000 kg/yr/km^2
sgriff_loadyields %>%
select(state:nitrogen) %>%
mutate(nitrogen = as.numeric(stringr::str_replace_all(nitrogen, ',', ''))) %>%
filter(nitrogen >= 1000) %>%
summarize(n = n())
write.csv('env-info/sgriff_N1000yields')
```
### EDAWR: Class 4 (1/29/2016)
```{r EDAWR, eval=F}
# install.packages("devtools")
# devtools::install_github("rstudio/EDAWR")
library(EDAWR)
help(package='EDAWR')
?storms # wind speed data for 6 hurricanes
?cases # subset of WHO tuberculosis
?pollution # pollution data from WHO Ambient Air Pollution, 2014
?tb # tuberculosis data
View(storms)
View(cases)
View(pollution)
```
### slicing
```{r traditional R slicing, eval=F}
# storms
storms$storm
storms$wind
storms$pressure
storms$date
# cases
cases$country
names(cases)[-1]
unlist(cases[1:3, 2:4])
# pollution
pollution$city[c(1,3,5)]
pollution$city[pollution$city != 'New York']
pollution %>%
filter(city !='New York')
pollution$amount[c(1,3,5)]
pollution$amount[c(2,4,6)]
# ratio
storms$pressure / storms$wind
```
## tidyr
#Two main functions: gather() and spread()
```{r tidyr, eval=F}
# install.packages("tidyr")
library(tidyr)
?gather # gather to long
?spread # spread to wide
```
### `gather`
```{r gather, eval=F}
cases
gather(cases, "year", "n", 2:4)
cases %>%
gather("year", "n", -country) %>%
filter(
year %in% c(2011,2013) &
!country %in% c('FR','US'))
```
### `spread`
```{r spread, eval=F}
pollution
spread(pollution, size, amount)
```
#Other functions to extract and combine columns...
### `separate`
```{r separate, eval=F}
storms
storms2 = separate(storms, date, c("year", "month", "day"), sep = "-")
library(stringr)
library(dplyr)
storms %>%
mutate(date_str = as.character(date))
```
### `unite`
```{r unite, eval=F}
storms2
unite(storms2, "date", year, month, day, sep = "-")
```
**Recap: tidyr**:
- A package that reshapes the layout of data sets.
- Make observations from variables with `gather()` Make variables from observations with `spread()`
- Split and merge columns with `unite()` and `separate()`
From the [data-wrangling-cheatsheet.pdf](./refs/cheatsheets/data-wrangling-cheatsheet.pdf):
![](wk04_tidyr/img/data-wrangling-cheatsheet_tidyr.png)
### tidy CO<sub>2</sub> emissions
_**Task**. Convert the following table [CO<sub>2</sub> emissions per country since 1970](http://edgar.jrc.ec.europa.eu/overview.php?v=CO2ts1990-2014&sort=des9) from wide to long format and output the first few rows into your Rmarkdown. I recommend consulting `?gather` and you should have 3 columns in your output._
```setwd()
dir_child = 'students'
if (dir_child %in% list.files()){
if (interactive()) {
# R Console
setwd(dir_child)
} else {
# knitting
knitr::opts_knit$set(root.dir=dir_child)
}
}
```
```{r read co2, eval=F}
library(readxl) # install.packages('readxl')
url = 'http://edgar.jrc.ec.europa.eu/news_docs/CO2_1970-2014_dataset_of_CO2_report_2015.xls'
xls = '../data/co2_europa.xls'
print(getwd())
if (!file.exists(xls)){
download.file(url, xls)
}
co2 = read_excel(xls, skip=12)
co2
```
_**Question**. Why use `skip=12` argument in `read_excel()`?_
## dplyr
A package that helps transform tabular data
```{r dplyr, eval=F}
# install.packages("dplyr")
library(dplyr)
?select
?filter
?arrange
?mutate
?group_by
?summarise
```
See sections in the [data-wrangling-cheatsheet.pdf](./refs/cheatsheets/data-wrangling-cheatsheet.pdf):
- Subset Variables (Columns), eg `select()`
- Subset Observations (Rows), eg `filter()`
- Reshaping Data - Change the layout of a data set, eg `arrange()`
- Make New Variables, eg `mutate()`
- Group Data, eg `group_by()` and `summarise()`
### `select`
```{r select, eval=F}
storms
select(storms, storm, pressure)
storms %>% select(storm, pressure)
```
### `filter`
```{r filter, eval=F}
storms
filter(storms, wind >= 50)
storms %>% filter(wind >= 50)
storms %>%
filter(wind >= 50) %>%
select(storm, pressure)
```
### `mutate`
```{r mutate, eval=F}
storms %>%
mutate(ratio = pressure / wind) %>%
select(storm, ratio)
```
### `group_by`
```{r group_by, eval=F}
pollution
pollution %>% group_by(city)
```
### `summarise`
```{r summarise, eval = F}
# by city
pollution %>%
group_by(city) %>%
summarise(
mean = mean(amount),
sum = sum(amount),
n = n())
# by size
pollution %>%
group_by(size) %>%
summarise(
mean = mean(amount),
sum = sum(amount),
n = n())
```
note that `summarize` synonymously works
### `ungroup`
```{r ungroup, eval=F}
pollution %>%
group_by(size)
pollution %>%
group_by(size) %>%
ungroup()
```
### multiple groups
```{r multiple groups, eval=F}
tb %>%
group_by(country, year) %>%
summarise(cases = sum(cases))
summarise(cases = sum(cases))
```
**Recap: dplyr**:
- Extract columns with `select()` and rows with `filter()`
- Sort rows by column with `arrange()`
- Make new columns with `mutate()`
- Group rows by column with `group_by()` and `summarise()`
See sections in the [data-wrangling-cheatsheet.pdf](./refs/cheatsheets/data-wrangling-cheatsheet.pdf):
- Subset Variables (Columns), eg `select()`
- Subset Observations (Rows), eg `filter()`
- Reshaping Data - Change the layout of a data set, eg `arrange()`
- Make New Variables, eg `mutate()`
- Group Data, eg `group_by()` and `summarise()`
### summarize CO<sub>2</sub> emissions
_**Task**. Report the top 5 emitting countries (not World or EU28) for 2014 using your long format table. (You may need to convert your year column from factor to numeric, eg `mutate(year = as.numeric(as.character(year)))`. As with most analyses, there are multiple ways to do this. I used the following functions: `filter`, `arrange`, `desc`, `head`)_.
_**Task**. Summarize the total emissions by country (not World or EU28) across years from your long format table and return the top 5 emitting countries. (As with most analyses, there are multiple ways to do this. I used the following functions: `filter`, `arrange`, `desc`, `head`)_.
## joining data
### `bind_cols`
```{r bind_cols, eval=F}
y = data.frame(
x1 = c('A','B','C'),
x2 = c( 1 , 2 , 3),
stringsAsFactors=F)
z = data.frame(
x1 = c('B','C','D'),
x2 = c( 2 , 3 , 4),
stringsAsFactors=F)
y
z
bind_cols(y, z)
```
### `bind_rows`
```{r bind_rows, eval=F}
y
z
bind_rows(y, z)
```
### `union`
```{r union, eval=F}
y
z
union(y, z)
```
### `intersect`
```{r intersect, eval=F}
y
z
intersect(y, z)
```
### `setdiff`
```{r setdiff, eval=F}
y
z
setdiff(y, z)
```
### `left_join`
```{r left_join, eval=F}
songs = data.frame(
song = c('Across the Universe','Come Together', 'Hello, Goodbye', 'Peggy Sue'),
name = c('John','John','Paul','Buddy'),
stringsAsFactors=F)
artists = data.frame(
name = c('George','John','Paul','Ringo'),
plays = c('sitar','guitar','bass','drums'),
stringsAsFactors=F)
left_join(songs, artists, by='name')
```
### `inner_join`
```{r inner_join, eval=F}
inner_join(songs, artists, by = "name")
```
### `semi_join`
```{r semi_join, eval=F}
semi_join(songs, artists, by = "name")
```
### `anti_join`
```{r anti_join, eval=F}
anti_join(songs, artists, by = "name")
```
### summarize per capita CO<sub>2</sub> emissions
You'll join the [gapminder](https://github.com/jennybc/gapminder) datasets to get world population per country.
_**Task**. Summarize the total emissions by country (not World or EU28) per capita across years from your long format table and return the top 5 emitting countries. (As with most analyses, there are multiple ways to do this. I used the following functions: `filter`, `arrange`, `desc`, `head`)_.
```{r gapminder, eval=F}
library(gapminder) # install.packages('gapminder')
```
## References
### Data Wrangling in R
- [Data Wrangling (dplyr, tidyr) cheat sheet]({{ site.baseurl }}/refs/cheatsheets/data-wrangling-cheatsheet.pdf)
- [wrangling-webinar.pdf](wrangling-webinar.pdf)
## 4. Tidying Up Data
### EDAWR
```{r EDAWR}
# install.packages("devtools")
# devtools::install_github("rstudio/EDAWR")
library(EDAWR)
help(package='EDAWR')
?storms # wind speed data for 6 hurricanes
?cases # subset of WHO tuberculosis
?pollution # pollution data from WHO Ambient Air Pollution, 2014
?tb # tuberculosis data
View(storms)
View(cases)
View(pollution)
```
### slicing
```{r traditional R slicing}
# storms
storms$storm
storms$wind
storms$pressure
storms$date
# cases
cases$country
names(cases)[-1]
unlist(cases[1:3, 2:4])
# pollution
pollution$city[c(1,3,5)]
pollution$amount[c(1,3,5)]
pollution$amount[c(2,4,6)]
# ratio
storms$pressure / storms$wind
```
```{r dplyr on storms}
# better yet
library(dplyr)
storms %>%
filter(storm != 'Ana') %>%
mutate(
ratio = pressure / wind)
```
## tidyr
Two main functions: gather() and spread()
```{r tidyr}
# install.packages("tidyr")
library(tidyr)
?gather # gather to long
?spread # spread to wide
```
### `gather`
```{r gather}
cases
gather(cases, "year", "n", 2:4)
```
### `spread`
```{r spread}
pollution
spread(pollution, size, amount)
```
Other functions to extract and combine columns...
### `separate`
```{r separate}
storms
storms2 = separate(storms, date, c("year", "month", "day"), sep = "-")
```
### `unite`
```{r unite}
storms2
unite(storms2, "date", year, month, day, sep = "-")
```
**Recap: tidyr**:
- A package that reshapes the layout of data sets.
- Make observations from variables with `gather()` Make variables from observations with `spread()`
- Split and merge columns with `unite()` and `separate()`
From the [data-wrangling-cheatsheet.pdf](./refs/cheatsheets/data-wrangling-cheatsheet.pdf):
![](wk04_tidyr/img/data-wrangling-cheatsheet_tidyr.png)
### tidy CO<sub>2</sub> emissions
_**Task**. Convert the following table [CO<sub>2</sub> emissions per country since 1970](http://edgar.jrc.ec.europa.eu/overview.php?v=CO2ts1990-2014&sort=des9) from wide to long format and output the first few rows into your Rmarkdown. I recommend consulting `?gather` and you should have 3 columns in your output._
```{r read co2}
library(dplyr)
library(readxl) # install.packages('readxl')
# xls downloaded from http://edgar.jrc.ec.europa.eu/news_docs/CO2_1970-2014_dataset_of_CO2_report_2015.xls
xls = '../data/co2_europa.xls'
print(getwd())
co2 = read_excel(xls, skip=12)
co2
```
co2Long = gather(co2, "Year", "CO2", 2:46)
as.numeric(as.character(co2Long$CO2))
head(co2Long)
_**Question**. Why use `skip=12` argument in `read_excel()`?_ The data is entered on line 13. "Skip=12" omits the first 12 lines of the Excel sheet.
## dplyr
A package that helps transform tabular data
```{r dplyr}
# install.packages("dplyr")
library(dplyr)
?select
?filter
?arrange
?mutate
?group_by
?summarise
```
See sections in the [data-wrangling-cheatsheet.pdf](./refs/cheatsheets/data-wrangling-cheatsheet.pdf):
- Subset Variables (Columns), eg `select()`
- Subset Observations (Rows), eg `filter()`
- Reshaping Data - Change the layout of a data set, eg `arrange()`
- Make New Variables, eg `mutate()`
- Group Data, eg `group_by()` and `summarise()`
### `select`
```{r select}
storms
select(storms, storm, pressure)
storms %>% select(storm, pressure)
```
### `filter`
```{r filter}
storms
filter(storms, wind >= 50)
storms %>% filter(wind >= 50)
storms %>%
filter(wind >= 50) %>%
select(storm, pressure)
```
### `mutate`
```{r mutate}
storms %>%
mutate(ratio = pressure / wind) %>%
select(storm, ratio)
```
### `group_by`
```{r group_by}
pollution
pollution %>% group_by(city)
```
### `summarise`
```{r summarise}
# by city
pollution %>%
group_by(city) %>%
summarise(
mean = mean(amount),
sum = sum(amount),
n = n())
# by size
pollution %>%
group_by(size) %>%
summarise(
mean = mean(amount),
sum = sum(amount),
n = n())
```
note that `summarize` synonymously works
### `ungroup`
```{r ungroup}
pollution %>%
group_by(size)
pollution %>%
group_by(size) %>%
ungroup()
```
### multiple groups
```{r multiple groups}
tb %>%
group_by(country, year) %>%
summarise(cases = sum(cases))
summarise(cases = sum(cases))
```
**Recap: dplyr**:
- Extract columns with `select()` and rows with `filter()`
- Sort rows by column with `arrange()`
- Make new columns with `mutate()`
- Group rows by column with `group_by()` and `summarise()`
See sections in the [data-wrangling-cheatsheet.pdf](./refs/cheatsheets/data-wrangling-cheatsheet.pdf):
- Subset Variables (Columns), eg `select()`
- Subset Observations (Rows), eg `filter()`
- Reshaping Data - Change the layout of a data set, eg `arrange()`
- Make New Variables, eg `mutate()`
- Group Data, eg `group_by()` and `summarise()`
### summarize CO<sub>2</sub> emissions
## 4. Answers and Tasks
_**Task**. Report the top 5 emitting countries (not World or EU28) for 2014 using your long format table. (You may need to convert your year column from factor to numeric, eg `mutate(year = as.numeric(as.character(year)))`. As with most analyses, there are multiple ways to do this. I used the following functions: `filter`, `arrange`, `desc`, `head`)_.
co2Long %>%
mutate(as.numeric(as.character(CO2))) %>%
filter(Country != 'EU28', Country != 'World', Country != 'Int. Aviation', Country != 'Int. Shipping') %>%
filter(Year %in% '2014') %>%
arrange(desc(CO2)) %>%
View(head)
_**Task**. Summarize the total emissions by country (not World or EU28) across years from your long format table and return the top 5 emitting countries. (As with most analyses, there are multiple ways to do this. I used the following functions: `filter`, `arrange`, `desc`, `head`)_.
co2Long %>%
mutate(as.numeric(as.character(CO2))) %>%
filter(Country != 'EU28', Country != 'World', Country != 'Int. Aviation', Country != 'Int. Shipping') %>%
group_by(Country) %>%
mutate(Total = CO2) %>%
arrange(desc(CO2)) %>%
View(head)