Skip to content

Latest commit

 

History

History
670 lines (521 loc) · 21.9 KB

C_API.md

File metadata and controls

670 lines (521 loc) · 21.9 KB

libprimesieve C API

libprimesieve is a highly optimized library for generating prime numbers, it can generate primes and prime k-tuplets up to 264. libprimesieve generates primes using the segmented sieve of Eratosthenes with wheel factorization. This algorithm has a run time complexity of $O(n\log{\log{n}})$ operations and uses $O(\sqrt{n})$ memory. This page contains a selection of C code snippets that show how to use libprimesieve to generate prime numbers. These examples cover the most frequently used functionality of libprimesieve. Arguably the most useful feature provided by libprimesieve is the primesieve_iterator which lets you iterate over primes using the primesieve_next_prime() or primesieve_prev_prime() functions.

The functions of libprimesieve's C API are defined in the <primesieve.h> and <primesieve/iterator.h> header files. If you need detailed information about libprimesieve's function signatures, e.g. because you want to write libprimesieve bindings for another programming language, then I suggest you read the libprimesieve header files which also contain additional documentation about the function parameters and return values.

Contents

primesieve_next_prime()

By default primesieve_next_prime() generates primes ≥ 0 i.e. 2, 3, 5, 7, ...

  • If you have specified a non-default start number using the primesieve_jump_to() function, then the first primesieve_next_prime() call returns the first prime ≥ start number. If want to generate primes > start number you need to use e.g. primesieve_jump_to(iter, start+1, stop).
  • Note that primesieve_iterator is not ideal if you are repeatedly iterating over the same primes in a loop, in this case it is better to store the primes in an array (provided your PC has sufficient RAM memory).
  • If needed, you can also use multiple primesieve_iterator objects within the same program.
#include <primesieve.h>
#include <inttypes.h>
#include <stdio.h>

int main(void)
{
  primesieve_iterator it;
  primesieve_init(&it);

  uint64_t sum = 0;
  uint64_t prime = 0;

  /* Iterate over the primes <= 10^9 */
  while ((prime = primesieve_next_prime(&it)) <= 1000000000)
    sum += prime;

  printf("Sum of the primes <= 10^9: %" PRIu64 "\n", sum);
  primesieve_free_iterator(&it);

  return 0;
}

primesieve_jump_to() (since primesieve-11.0)

This function changes the start number of the primesieve_iterator object. (By default the start number is initialized to 0). The stop_hint parameter is used for performance optimization, primesieve_iterator only buffers primes up to this limit.

  • The first primesieve_next_prime() call after primesieve_jump_to() returns the first prime ≥ start number. If want to generate primes > start number you need to use e.g. primesieve_jump_to(iter, start+1, stop).
  • The first primesieve_next_prime() call after primesieve_jump_to() incurs an initialization overhead of $O(\sqrt{start}\times \log{\log{\sqrt{start}}})$ operations. After that, any additional primesieve_next_prime() call executes in amortized $O(\log{n}\times \log{\log{n}})$ operations.
#include <primesieve.h>
#include <inttypes.h>
#include <stdio.h>

int main(void)
{
  primesieve_iterator it;
  primesieve_init(&it);

  /* primesieve_jump_to(&it, start, stop_hint) */
  primesieve_jump_to(&it, 1000, 1100);
  uint64_t prime;

  /* Iterate over primes from [1000, 1100] */
  while ((prime = primesieve_next_prime(&it)) <= 1100)
    printf("%" PRIu64 "\n", prime);

  primesieve_free_iterator(&it);
  return 0;
}

primesieve_skipto() (deprecated in primesieve-11.0)

Similar to primesieve_jump_to(), the primesieve_skipto() function changes the start number of the primesieve_iterator object. However, when calling primesieve_next_prime() or primesieve_prev_prime() for the first time the start number will be excluded. Hence primesieve_next_prime() will generate primes > start and primesieve_prev_prime() will generate primes < start. primesieve_skipto() has been deprecated in primesieve-11.0 in favor of primesieve_jump_to(), because the use of primesieve_skipto() requires to correct the start number in most cases using e.g. primesieve_skipto(iter, start-1, stop).

  • The first primesieve_next_prime() call after primesieve_skipto() incurs an initialization overhead of $O(\sqrt{start}\times \log{\log{\sqrt{start}}})$ operations. After that, any additional primesieve_next_prime() call executes in amortized $O(\log{n}\times \log{\log{n}})$ operations.
#include <primesieve.h>
#include <inttypes.h>
#include <stdio.h>

int main(void)
{
  primesieve_iterator it;
  primesieve_init(&it);

  /* primesieve_skipto(&it, start, stop_hint) */
  primesieve_skipto(&it, 1000, 1100);
  uint64_t prime;

  /* Iterate over primes from ]1000, 1100] */
  while ((prime = primesieve_next_prime(&it)) <= 1100)
    printf("%" PRIu64 "\n", prime);

  primesieve_free_iterator(&it);
  return 0;
}

primesieve_prev_prime()

Before using primesieve_prev_prime() you must first change the start number using the primesieve_jump_to() function (because the start number is initialized to 0 be default).

  • Please note that the first primesieve_prev_prime() call returns the first prime ≤ start number. If want to generate primes < start number you need to use e.g. primesieve_jump_to(iter, start-1, stop).
  • As a special case, primesieve_prev_prime() returns 0 after the prime 2 (i.e. when there are no more primes). This makes it possible to conveniently iterate backwards over all primes > 0 as can be seen in the example below.
#include <primesieve.h>
#include <inttypes.h>
#include <stdio.h>

int main(void)
{
  primesieve_iterator it;
  primesieve_init(&it);

  /* primesieve_jump_to(&it, start, stop_hint) */
  primesieve_jump_to(&it, 2000, 0);
  uint64_t prime;

  /* Iterate over primes from [2000, 0[ */
  while ((prime = primesieve_prev_prime(&it)) > 0)
    printf("%" PRIu64 "\n", prime);

  primesieve_free_iterator(&it);
  return 0;
}

primesieve_generate_primes()

Stores the primes inside [start, stop] in an array. The last primes type parameter may be one of: SHORT_PRIMES, USHORT_PRIMES, INT_PRIMES, UINT_PRIMES, LONG_PRIMES, ULONG_PRIMES, LONGLONG_PRIMES, ULONGLONG_PRIMES, INT16_PRIMES, UINT16_PRIMES, INT32_PRIMES, UINT32_PRIMES, INT64_PRIMES, UINT64_PRIMES.

#include <primesieve.h>
#include <stdio.h>

int main(void)
{
  uint64_t start = 0;
  uint64_t stop = 1000;
  size_t size;

  /* Get an array with the primes inside [start, stop] */
  int* primes = (int*) primesieve_generate_primes(start, stop, &size, INT_PRIMES);

  for (size_t i = 0; i < size; i++)
    printf("%i\n", primes[i]);

  primesieve_free(primes);
  return 0;
}

primesieve_generate_n_primes()

Stores the first n primes ≥ start in an array. The last primes type parameter may be one of: SHORT_PRIMES, USHORT_PRIMES, INT_PRIMES, UINT_PRIMES, LONG_PRIMES, ULONG_PRIMES, LONGLONG_PRIMES, ULONGLONG_PRIMES, INT16_PRIMES, UINT16_PRIMES, INT32_PRIMES, UINT32_PRIMES, INT64_PRIMES, UINT64_PRIMES.

#include <primesieve.h>
#include <stdio.h>

int main(void)
{
  uint64_t n = 1000;
  uint64_t start = 0;

  /* Get an array with the first 1000 primes */
  int64_t* primes = (int64_t*) primesieve_generate_n_primes(n, start, INT64_PRIMES);

  for (size_t i = 0; i < n; i++)
    printf("%li\n", primes[i]);

  primesieve_free(primes);
  return 0;
}

primesieve_count_primes()

Counts the primes inside [start, stop]. This function is multi-threaded and uses all available CPU cores by default.

#include <primesieve.h>
#include <inttypes.h>
#include <stdio.h>

int main(void)
{
  /* primesieve_count_primes(start, stop) */
  uint64_t count = primesieve_count_primes(0, 1000);
  printf("Primes <= 1000: %" PRIu64 "\n", count);

  return 0;
}

primesieve_nth_prime()

This function finds the nth prime e.g. nth_prime(25) = 97. This function is multi-threaded and uses all available CPU cores by default.

#include <primesieve.h>
#include <inttypes.h>
#include <stdio.h>

int main(void)
{
  /* primesieve_nth_prime(n, start) */
  uint64_t n = 25;
  uint64_t prime = primesieve_nth_prime(n, 0);
  printf("%" PRIu64 "th prime = %" PRIu64 "\n", n, prime);

  return 0;
}

Error handling

PRIMESIEVE_ERROR

If an error occurs, libprimesieve functions with a uint64_t return type return PRIMESIEVE_ERROR (which is defined as UINT64_MAX in <primesieve.h>) and the corresponding error message is printed to the standard error stream.

#include <primesieve.h>
#include <inttypes.h>
#include <stdio.h>

int main(void)
{
  uint64_t count = primesieve_count_primes(0, 1000);

  if (count != PRIMESIEVE_ERROR)
    printf("Primes <= 1000: %" PRIu64 "\n", count);
  else
    printf("Error in libprimesieve!\n");

  return 0;
}

primesieve_iterator.is_error

For the primesieve_iterator, you can check if the return value of primesieve_next_prime() is PRIMESIEVE_ERROR to know if an error occured. However, primesieve_iterator also supports a 2nd option for error handling: by default primesieve_iterator.is_error is initialized to 0 in primesieve_init(), if any error occurs primesieve_iterator.is_error is set to 1. This is useful to check after a computation that no error has occurred, this way you don't have to check the return value of every single primesieve_next_prime() call.

#include <primesieve.h>
#include <inttypes.h>
#include <stdio.h>
#include <stdlib.h>

uint64_t get_prime_sum(uint64_t stop)
{
  primesieve_iterator it;
  primesieve_init(&it);
  uint64_t sum = 0;
  uint64_t prime = 0;

  while ((prime = primesieve_next_prime(&it)) <= stop)
    sum += prime;

  if (it.is_error) {
    printf("Error in libprimesieve!\n");
    primesieve_free_iterator(&it);
    exit(EXIT_FAILURE);
  }
  else {
    primesieve_free_iterator(&it);
    return sum;
  }
}

errno

libprimesieve C API functions also set the C errno variable to EDOM if any error occurs. This makes it possible to check if an error has occurred in libprimesieve functions with e.g. a void return type. errno is also useful to check after a computation that no error has occurred, this way you don't have to check the return value of every single primesieve function call.

#include <primesieve.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>

int* get_primes(int n, int start)
{
  /* Reset errno before computation */
  errno = 0;

  int* primes = (int*) primesieve_generate_n_primes(n, start, INT_PRIMES);

  /* Check errno after computation */
  if (errno == EDOM) {
    printf("Error in libprimesieve!\n");
    exit(EXIT_FAILURE);
  }

  return primes;
}

Performance tips

  • If you are repeatedly iterating over the same primes in a loop, you should use primesieve_generate_primes() or primesieve_generate_n_primes() to store these primes in an array (provided your PC has sufficient RAM memory) instead of using a primesieve_iterator.

  • primesieve_next_prime() runs up to 2x faster and uses only half as much memory as primesieve_prev_prime(). Oftentimes algorithms that iterate over primes using primesieve_prev_prime() can be rewritten using primesieve_next_prime() which improves performance in most cases.

  • primesieve_iterator is single-threaded. See the Multi-threading section for how to parallelize an algorithm using multiple primesieve_iterator objects.

  • The primesieve_iterator data structure allows you to access the underlying 64-bit primes array, together with the primesieve_generate_next_primes() function, this can be used for all kinds of low-level optimizations. E.g. the SIMD (vectorization) section contains an example that shows how to process primes using SIMD instructions.

  • The primesieve_jump_to() function takes an optional stop_hint parameter that can provide a significant speedup if the sieving distance is relatively small e.g. < sqrt(start). If stop_hint is set primesieve_iterator will only buffer primes up to this limit.

  • Many of libprimesieve's functions e.g. primesieve_count_primes(start, stop) and primesieve_nth_prime(n, start) incur an initialization overhead of O(sqrt(start)) even if the total sieving distance is tiny. It is therefore not a good idea to call these functions repeatedly in a loop unless the sieving distance is sufficiently large e.g. > sqrt(start). If the sieving distance is mostly small consider using a primesieve_iterator instead to avoid the recurring initialization overhead.

Multi-threading

By default libprimesieve uses multi-threading for counting primes/k-tuplets and for finding the nth prime. However primesieve_iterator the most useful feature provided by libprimesieve runs single-threaded because it is simply not possible to efficiently parallelize the generation of primes in sequential order.

Hence if you want to parallelize an algorithm using primesieve_iterator you need to implement the multi-threading part yourself. The basic technique for parallelizing an algorithm using primesieve_iterator is:

  • Subdivide the sieving distance into equally sized chunks.
  • Process each chunk in its own thread.
  • Combine the partial thread results to get the final result.

The C example below calculates the sum of the primes ≤ 1010 in parallel using OpenMP. Each thread processes a chunk of size (dist / threads) + 1 using its own primesieve_iterator object. The OpenMP reduction clause takes care of adding the partial prime sum results together in a thread safe manner.

#include <primesieve.h>
#include <inttypes.h>
#include <stdio.h>
#include <omp.h>

int main(void)
{
  uint64_t sum = 0;
  uint64_t dist = 1e10;
  int threads = omp_get_max_threads();
  uint64_t thread_dist = (dist / threads) + 1;

  #pragma omp parallel for reduction(+: sum)
  for (int i = 0; i < threads; i++)
  {
    uint64_t start = i * thread_dist;
    uint64_t stop = start + thread_dist;
    stop = stop < dist + 1 ? stop : dist + 1;
    primesieve_iterator it;
    primesieve_init(&it);
    primesieve_jump_to(&it, start, stop);
    uint64_t prime = primesieve_next_prime(&it);

    /* Sum primes inside [start, stop[ */
    for (; prime < stop; prime = primesieve_next_prime(&it))
      sum += prime;
  }

  printf("Sum of the primes <= 10^10: %" PRIu64 "\n", sum);

  return 0;
}
Build instructions
# Unix-like OSes
cc -O3 -fopenmp primesum.c -o primesum -lprimesieve
time ./primesum

SIMD (vectorization)

SIMD stands for Single Instruction/Multiple Data, it is also commonly known as vectorization. SIMD is supported by most CPUs e.g. all ARM64 CPUs support the ARM NEON instruction set and most x64 CPUs support the AVX2 or AVX512 instruction sets. Using SIMD instructions can significantly speed up some algorithms. The primesieve_iterator data structure allows you to access the underlying 64-bit primes array and process its elements using SIMD instructions.

The C example below calculates the sum of all primes ≤ 10^10 using the AVX512 vector instruction set for x64 CPUs. This code uses the primesieve_generate_next_primes() function to generate the next 2^10 primes in a loop and then calculates their sum using AVX512 vector intrinsics. Note that primesieve_generate_next_primes() is also used under the hood by the primesieve_next_prime() function.

#include <primesieve.h>
#include <immintrin.h>
#include <inttypes.h>
#include <stdio.h>

int main(void)
{
  primesieve_iterator it;
  primesieve_init(&it);
  primesieve_generate_next_primes(&it);

  uint64_t limit = 10000000000;
  __m512i sums = _mm512_setzero_si512();

  while (it.primes[it.size - 1] <= limit)
  {
    // Sum 64-bit primes using AVX512
    for (size_t i = 0; i < it.size; i += 8) {
      __mmask8 mask = (i + 8 < it.size) ? 0xff : 0xff >> (i + 8 - it.size);
      __m512i primes = _mm512_maskz_loadu_epi64(mask, (__m512i*) &it.primes[i]);
      sums = _mm512_add_epi64(sums, primes);
    }

    // Generate up to 2^10 new primes
    primesieve_generate_next_primes(&it);
  }

  // Sum the 8 partial sums
  uint64_t sum = _mm512_reduce_add_epi64(sums);

  // Process the remaining primes (at most 2^10)
  for (size_t i = 0; it.primes[i] <= limit; i++)
    sum += it.primes[i];

  printf("Sum of the primes <= %" PRIu64 ": %" PRIu64 "\n", limit, sum);
  primesieve_free_iterator(&it);

  return 0;
}
Build instructions
# Unix-like OSes
cc -O3 -mavx512f -funroll-loops primesum.c -o primesum -lprimesieve
time ./primesum

Compiling and linking

Unix-like OSes

If libprimesieve is installed on your system, then you can compile any of the C example programs above using:

# Link against shared libprimesieve
cc -O3 primes.c -o primes -lprimesieve

# For statically linking libprimesieve into your C program you need to link
# against libprimesieve, the C++ standard library and the math library.
# Please note that the linking command may be different for your particular
# compiler and operating system.
gcc -O3 -static primes.c -o primes -lprimesieve -lstdc++ -lm

If you have built libprimesieve yourself, then the default installation path is usually /usr/local/lib. Running the ldconfig program after make install ensures that Linux's dynamic linker/loader will find the shared primesieve library when you execute your program. However, some OSes are missing the ldconfig program or ldconfig does not include /usr/local/lib by default. In these cases you need to export some environment variables:

export LIBRARY_PATH=/usr/local/lib:$LIBRARY_PATH
export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH
export C_INCLUDE_PATH=/usr/local/include:$C_INCLUDE_PATH

Microsoft Visual C++

cl /O2 /EHsc /MD primes.c /I "path\to\primesieve\include" /link "path\to\primesieve.lib"

pkgconf support

primesieve also has support for the pkgconf program which allows to easily compile C and C++ programs depending on libprimesieve without having to care about the library and include paths:

cc -O3 main.c -o main $(pkgconf --libs --cflags primesieve)

CMake support

If you are using the CMake build system to compile your program and libprimesieve is installed on your system, then you can add the following two lines to your CMakeLists.txt to link your program against libprimesieve.

find_package(primesieve REQUIRED)
target_link_libraries(your_program primesieve::primesieve)

To link against the static libprimesieve use:

find_package(primesieve REQUIRED static)
target_link_libraries(your_program primesieve::primesieve)

Minimal CMake project file

If you want to build your C program (named primes.c) using CMake, then you can use the minimal CMakeLists.txt below. Note that this requires that libprimesieve is installed on your system. Using CMake has the advantage that you don't need to specify the libprimesieve include path and the -lprimesieve linker option when building your project.

# File: CMakeLists.txt
cmake_minimum_required(VERSION 3.4...3.19)
project(primes C CXX)
find_package(primesieve REQUIRED)
add_executable(primes primes.c)
target_link_libraries(primes primesieve::primesieve)

Put the CMakeLists.txt file from above into the same directory as your primes.c file.
Then open a terminal, cd into that directory and build your project using:

cmake . -DCMAKE_BUILD_TYPE=Release
cmake --build .

Using the MSVC compiler (Windows) the build instructions are slightly different. First you should link against the static libprimesieve in your CMakeLists.txt using: find_package(primesieve REQUIRED static). Next open a Visual Studio Command Prompt, cd into your project's directory and build your project using:

cmake -G "Visual Studio 16 2019" .
cmake --build . --config Release