-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathbowl_dataset.py
64 lines (46 loc) · 1.92 KB
/
bowl_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
from utils import Dataset
from glob import glob
import os
import numpy as np
import re
import cv2
class BowlDataset(Dataset):
def load_bowl(self, base_path):
"""Generate the requested number of synthetic images.
count: number of images to generate.
height, width: the size of the generated images.
"""
self.add_class("bowl", 1, "nuclei")
masks = dict()
id_extractor = re.compile(f"{base_path}\{os.sep}(?P<image_id>.*)\{os.sep}masks\{os.sep}(?P<mask_id>.*)\.png")
for mask_path in glob(os.path.join(base_path, "**", "masks", "*.png")):
matches = id_extractor.match(mask_path)
image_id = matches.group("image_id")
image_path = os.path.join(base_path, image_id, "images", image_id + ".png")
if image_path in masks:
masks[image_path].append(mask_path)
else:
masks[image_path] = [mask_path]
for i, (image_path, mask_paths) in enumerate(masks.items()):
self.add_image("bowl", image_id=i, path=image_path, mask_paths=mask_paths)
def load_image(self, image_id):
info = self.image_info[image_id]
return cv2.imread(info["path"])
def image_reference(self, image_id):
"""Return the shapes data of the image."""
info = self.image_info[image_id]
if info["source"] == "shapes":
return info["shapes"]
else:
super(self.__class__).image_reference(self, image_id)
def load_mask(self, image_id):
info = self.image_info[image_id]
mask_paths = info["mask_paths"]
count = len(mask_paths)
masks = []
for i, mask_path in enumerate(mask_paths):
masks.append(cv2.imread(mask_path, 0))
masks = np.stack(masks, axis=-1)
masks = np.where(masks > 128, 1, 0)
class_ids = np.ones(count)
return masks, class_ids.astype(np.int32)