forked from thmoa/videoavatars
-
Notifications
You must be signed in to change notification settings - Fork 0
/
step1_pose.py
377 lines (291 loc) · 11.6 KB
/
step1_pose.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
import cv2
import h5py
import argparse
import numpy as np
import chumpy as ch
import cPickle as pkl
from opendr.camera import ProjectPoints
from opendr.lighting import LambertianPointLight
from opendr.renderer import ColoredRenderer
from opendr.filters import gaussian_pyramid
from util import im
from util.logger import log
from lib.frame import FrameData
from models.smpl import Smpl, copy_smpl, joints_coco
from models.bodyparts import faces_no_hands
from vendor.smplify.sphere_collisions import SphereCollisions
from vendor.smplify.robustifiers import GMOf
def get_cb(viz_rn, f):
if viz_rn is not None:
viz_rn.set(v=f.smpl, background_image=np.dstack((f.mask, f.mask, f.mask)))
viz_rn.vc.set(v=f.smpl)
def cb(_):
debug = np.array(viz_rn.r)
for j in f.J_proj.r:
cv2.circle(debug, tuple(j.astype(np.int)), 3, (0, 0, 0.8), -1)
for j in f.keypoints[:, :2]:
cv2.circle(debug, tuple(j.astype(np.int)), 3, (0, 0.8, 0), -1)
im.show(debug, id='pose', waittime=1)
else:
cb = None
return cb
def collision_obj(smpl, regs):
sp = SphereCollisions(pose=smpl.pose, betas=smpl.betas, model=smpl, regs=regs)
sp.no_hands = True
return sp
def pose_prior_obj(smpl, prior_data):
return (smpl.pose[3:] - prior_data['mean']).reshape(1, -1).dot(prior_data['prec'])
def height_predictor(b2m, betas):
return ch.hstack((betas.reshape(1, -1), [[1]])).dot(b2m)
def init(frames, body_height, b2m, viz_rn):
betas = frames[0].smpl.betas
E_height = None
if body_height is not None:
E_height = height_predictor(b2m, betas) - body_height * 1000.
# first get a rough pose for all frames individually
for i, f in enumerate(frames):
if np.sum(f.keypoints[[0, 2, 5, 8, 11], 2]) > 3.:
if f.keypoints[2, 0] > f.keypoints[5, 0]:
f.smpl.pose[0] = 0
f.smpl.pose[2] = np.pi
E_init = {
'init_pose_{}'.format(i): f.pose_obj[[0, 2, 5, 8, 11]]
}
x0 = [f.smpl.trans, f.smpl.pose[:3]]
if E_height is not None and i == 0:
E_init['height'] = E_height
E_init['betas'] = betas
x0.append(betas)
ch.minimize(
E_init,
x0,
method='dogleg',
options={
'e_3': .01,
},
callback=get_cb(viz_rn, f)
)
weights = zip(
[5., 4.5, 4.],
[5., 4., 3.]
)
E_betas = betas - betas.r
for w_prior, w_betas in weights:
x0 = [betas]
E = {
'betas': E_betas * w_betas,
}
if E_height is not None:
E['height'] = E_height
for i, f in enumerate(frames):
if np.sum(f.keypoints[[0, 2, 5, 8, 11], 2]) > 3.:
x0.extend([f.smpl.pose[range(21) + range(27, 30) + range(36, 60)], f.smpl.trans])
E['pose_{}'.format(i)] = f.pose_obj
E['prior_{}'.format(i)] = f.pose_prior_obj * w_prior
ch.minimize(
E,
x0,
method='dogleg',
options={
'e_3': .01,
},
callback=get_cb(viz_rn, frames[0])
)
def reinit_frame(frame, null_pose, nohands, viz_rn):
if (np.sum(frame.pose_obj.r ** 2) > 625 or np.sum(frame.pose_prior_obj.r ** 2) > 75)\
and np.sum(frame.keypoints[[0, 2, 5, 8, 11], 2]) > 3.:
log.info('Tracking error too large. Re-init frame...')
x0 = [frame.smpl.pose[:3], frame.smpl.trans]
frame.smpl.pose[3:] = null_pose
if frame.keypoints[2, 0] > frame.keypoints[5, 0]:
frame.smpl.pose[0] = 0
frame.smpl.pose[2] = np.pi
E = {
'init_pose': frame.pose_obj[[0, 2, 5, 8, 11]],
}
ch.minimize(
E,
x0,
method='dogleg',
options={
'e_3': .1,
},
callback=get_cb(viz_rn, frame)
)
E = {
'pose': GMOf(frame.pose_obj, 100),
'prior': frame.pose_prior_obj * 8.,
}
x0 = [frame.smpl.trans]
if nohands:
x0.append(frame.smpl.pose[range(21) + range(27, 30) + range(36, 60)])
else:
x0.append(frame.smpl.pose[range(21) + range(27, 30) + range(36, 72)])
ch.minimize(
E,
x0,
method='dogleg',
options={
'e_3': .01,
},
callback=get_cb(viz_rn, frame)
)
def fit_pose(frame, last_smpl, frustum, nohands, viz_rn):
if nohands:
faces = faces_no_hands(frame.smpl.f)
else:
faces = frame.smpl.f
dst_type = cv2.cv.CV_DIST_L2 if cv2.__version__[0] == '2' else cv2.DIST_L2
dist_i = cv2.distanceTransform(np.uint8(frame.mask * 255), dst_type, 5) - 1
dist_i[dist_i < 0] = 0
dist_i[dist_i > 50] = 50
dist_o = cv2.distanceTransform(255 - np.uint8(frame.mask * 255), dst_type, 5)
dist_o[dist_o > 50] = 50
rn_m = ColoredRenderer(camera=frame.camera, v=frame.smpl, f=faces, vc=np.ones_like(frame.smpl), frustum=frustum,
bgcolor=0, num_channels=1)
E = {
'mask': gaussian_pyramid(rn_m * dist_o * 100. + (1 - rn_m) * dist_i, n_levels=4, normalization='size') * 80.,
'2dpose': GMOf(frame.pose_obj, 100),
'prior': frame.pose_prior_obj * 4.,
'sp': frame.collision_obj * 1e3,
}
if last_smpl is not None:
E['last_pose'] = GMOf(frame.smpl.pose - last_smpl.pose, 0.05) * 50.
E['last_trans'] = GMOf(frame.smpl.trans - last_smpl.trans, 0.05) * 50.
if nohands:
x0 = [frame.smpl.pose[range(21) + range(27, 30) + range(36, 60)], frame.smpl.trans]
else:
x0 = [frame.smpl.pose[range(21) + range(27, 30) + range(36, 72)], frame.smpl.trans]
ch.minimize(
E,
x0,
method='dogleg',
options={
'e_3': .01,
},
callback=get_cb(viz_rn, frame)
)
def main(keypoint_file, masks_file, camera_file, out, model_file, prior_file, resize,
body_height, nohands, display):
# load data
with open(model_file, 'rb') as fp:
model_data = pkl.load(fp)
with open(camera_file, 'rb') as fp:
camera_data = pkl.load(fp)
with open(prior_file, 'rb') as fp:
prior_data = pkl.load(fp)
if 'basicModel_f' in model_file:
regs = np.load('vendor/smplify/models/regressors_locked_normalized_female.npz')
b2m = np.load('assets/b2m_f.npy')
else:
regs = np.load('vendor/smplify/models/regressors_locked_normalized_male.npz')
b2m = np.load('assets/b2m_m.npy')
keypoints = h5py.File(keypoint_file, 'r')['keypoints']
masks = h5py.File(masks_file, 'r')['masks']
num_frames = masks.shape[0]
# init
base_smpl = Smpl(model_data)
base_smpl.trans[:] = np.array([0, 0, 3])
base_smpl.pose[0] = np.pi
base_smpl.pose[3:] = prior_data['mean']
camera = ProjectPoints(t=np.zeros(3), rt=np.zeros(3), c=camera_data['camera_c'] * resize,
f=camera_data['camera_f'] * resize, k=camera_data['camera_k'], v=base_smpl)
frustum = {'near': 0.1, 'far': 1000.,
'width': int(camera_data['width'] * resize), 'height': int(camera_data['height'] * resize)}
if display:
debug_cam = ProjectPoints(v=base_smpl, t=camera.t, rt=camera.rt, c=camera.c, f=camera.f, k=camera.k)
debug_light = LambertianPointLight(f=base_smpl.f, v=base_smpl, num_verts=len(base_smpl), light_pos=np.zeros(3),
vc=np.ones(3), light_color=np.ones(3))
debug_rn = ColoredRenderer(camera=debug_cam, v=base_smpl, f=base_smpl.f, vc=debug_light, frustum=frustum)
else:
debug_rn = None
# generic frame loading function
def create_frame(i, smpl, copy=True):
f = FrameData()
f.smpl = copy_smpl(smpl, model_data) if copy else smpl
f.camera = ProjectPoints(v=f.smpl, t=camera.t, rt=camera.rt, c=camera.c, f=camera.f, k=camera.k)
f.keypoints = np.array(keypoints[i]).reshape(-1, 3) * np.array([resize, resize, 1])
f.J = joints_coco(f.smpl)
f.J_proj = ProjectPoints(v=f.J, t=camera.t, rt=camera.rt, c=camera.c, f=camera.f, k=camera.k)
f.mask = cv2.resize(np.array(masks[i], dtype=np.float32), (0, 0),
fx=resize, fy=resize, interpolation=cv2.INTER_NEAREST)
f.collision_obj = collision_obj(f.smpl, regs)
f.pose_prior_obj = pose_prior_obj(f.smpl, prior_data)
f.pose_obj = (f.J_proj - f.keypoints[:, :2]) * f.keypoints[:, 2].reshape(-1, 1)
return f
base_frame = create_frame(0, base_smpl, copy=False)
# get betas from 5 frames
log.info('Initial fit')
num_init = 5
indices_init = np.ceil(np.arange(num_init) * num_frames * 1. / num_init).astype(np.int)
init_frames = [base_frame]
for i in indices_init[1:]:
init_frames.append(create_frame(i, base_smpl))
init(init_frames, body_height, b2m, debug_rn)
# get pose frame by frame
with h5py.File(out, 'w') as fp:
last_smpl = None
poses_dset = fp.create_dataset("pose", (num_frames, 72), 'f', chunks=True, compression="lzf")
trans_dset = fp.create_dataset("trans", (num_frames, 3), 'f', chunks=True, compression="lzf")
betas_dset = fp.create_dataset("betas", (10,), 'f', chunks=True, compression="lzf")
for i in xrange(num_frames):
if i == 0:
current_frame = base_frame
else:
current_frame = create_frame(i, last_smpl)
log.info('Fit frame {}'.format(i))
# re-init if necessary
reinit_frame(current_frame, prior_data['mean'], nohands, debug_rn)
# final fit
fit_pose(current_frame, last_smpl, frustum, nohands, debug_rn)
poses_dset[i] = current_frame.smpl.pose.r
trans_dset[i] = current_frame.smpl.trans.r
if i == 0:
betas_dset[:] = current_frame.smpl.betas.r
last_smpl = current_frame.smpl
log.info('Done.')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'keypoint_file',
type=str,
help="File that contains 2D keypoint detections")
parser.add_argument(
'masks_file',
type=str,
help="File that contains segmentations")
parser.add_argument(
'camera',
type=str,
help="pkl file that contains camera settings")
parser.add_argument(
'out',
type=str,
help="Out file path")
parser.add_argument(
'--model', '-m',
default='vendor/smpl/models/basicmodel_m_lbs_10_207_0_v1.0.0.pkl',
help='Path to SMPL model')
parser.add_argument(
'--prior', '-p',
default='assets/prior_a_pose.pkl',
help='Path to pose prior')
parser.add_argument(
'--resize', '-r', default=0.5, type=float,
help="Resize factor")
parser.add_argument(
'--body_height', '-bh', default=None, type=float,
help="Height of the subject in meters (optional)")
parser.add_argument(
'--nohands', '-nh',
action='store_true',
help="Exclude hands from optimization")
parser.add_argument(
'--display', '-d',
action='store_true',
help="Enable visualization")
args = parser.parse_args()
main(args.keypoint_file, args.masks_file, args.camera, args.out, args.model, args.prior, args.resize,
args.body_height, args.nohands, args.display)