This repository has been archived by the owner on Jan 29, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Change_Interval_HF.ino
154 lines (122 loc) · 5.27 KB
/
Change_Interval_HF.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
/****************************************************************************************************************************
Change_Interval_HF.ino
For Arduino megaAVR ATMEGA4809-based boards (UNO WiFi Rev2, NANO_EVERY, etc. )
Written by Khoi Hoang
Built by Khoi Hoang https://github.com/khoih-prog/megaAVR_TimerInterrupt
Licensed under MIT license
Now with we can use these new 16 ISR-based timers, while consuming only 1 hwarware Timer.
Their independently-selected, maximum interval is practically unlimited (limited only by unsigned long miliseconds)
The accuracy is nearly perfect compared to software timers. The most important feature is they're ISR-based timers
Therefore, their executions are not blocked by bad-behaving functions / tasks.
This important feature is absolutely necessary for mission-critical tasks.
*****************************************************************************************************************************/
/*
Notes:
Special design is necessary to share data between interrupt code and the rest of your program.
Variables usually need to be "volatile" types. Volatile tells the compiler to avoid optimizations that assume
variable can not spontaneously change. Because your function may change variables while your program is using them,
the compiler needs this hint. But volatile alone is often not enough.
When accessing shared variables, usually interrupts must be disabled. Even with volatile,
if the interrupt changes a multi-byte variable between a sequence of instructions, it can be read incorrectly.
If your data is multiple variables, such as an array and a count, usually interrupts need to be disabled
or the entire sequence of your code which accesses the data.
*/
// These define's must be placed at the beginning before #include "megaAVR_TimerInterrupt.h"
// _TIMERINTERRUPT_LOGLEVEL_ from 0 to 4
// Don't define _TIMERINTERRUPT_LOGLEVEL_ > 0. Only for special ISR debugging only. Can hang the system.
#define TIMER_INTERRUPT_DEBUG 0
#define _TIMERINTERRUPT_LOGLEVEL_ 3
// Select USING_16MHZ == true for 16MHz to Timer TCBx => shorter timer, but better accuracy
// Select USING_8MHZ == true for 8MHz to Timer TCBx => shorter timer, but better accuracy
// Select USING_250KHZ == true for 250KHz to Timer TCBx => shorter timer, but better accuracy
// Not select for default 250KHz to Timer TCBx => longer timer, but worse accuracy
#define USING_16MHZ true
#define USING_8MHZ false
#define USING_250KHZ false
#define USE_TIMER_0 false
#define USE_TIMER_1 true
#define USE_TIMER_2 false
#define USE_TIMER_3 false
#include "TimerInterrupt_Generic.h"
#if !defined(LED_BUILTIN)
#define LED_BUILTIN 13
#endif
#ifndef LED_BLUE
#define LED_BLUE 7
#endif
#define TIMER1_FREQUENCY 1000UL
volatile uint32_t Timer1Count = 0;
void printResult(uint32_t currTime)
{
Serial.print(F("Time = "));
Serial.print(currTime);
Serial.print(F(", Timer1Count = "));
Serial.println(Timer1Count);
}
void TimerHandler1()
{
Timer1Count++;
}
void setup()
{
Serial.begin(115200);
while (!Serial && millis() < 5000);
delay(500);
Serial.print(F("\nStarting Change_Interval_HF on "));
Serial.println(BOARD_NAME);
Serial.println(MEGA_AVR_TIMER_INTERRUPT_VERSION);
Serial.println(TIMER_INTERRUPT_GENERIC_VERSION);
Serial.print(F("CPU Frequency = "));
Serial.print(F_CPU / 1000000);
Serial.println(F(" MHz"));
Serial.print(F("TCB Clock Frequency = "));
#if USING_16MHZ
Serial.println(F("16MHz for highest accuracy"));
#elif USING_8MHZ
Serial.println(F("8MHz for very high accuracy"));
#else
Serial.println(F("250KHz for lower accuracy but longer time"));
#endif
// Timer0 is used for micros(), millis(), delay(), etc and can't be used
// Select Timer 1-2 for UNO, 0-5 for MEGA
// Timer 2 is 8-bit timer, only for higher frequency
ITimer1.init();
// Using ATmega328 used in UNO => 16MHz CPU clock ,
// For 16-bit timer 1, 3, 4 and 5, set frequency from 0.2385 to some KHz
// For 8-bit timer 2 (prescaler up to 1024, set frequency from 61.5Hz to some KHz
if (ITimer1.attachInterrupt(TIMER1_FREQUENCY, TimerHandler1))
{
Serial.print(F("Starting ITimer1 OK, millis() = "));
Serial.println(millis());
Serial.print(F("Frequency, Timer1 = "));
Serial.println(TIMER1_FREQUENCY);
}
else
Serial.println(F("Can't set ITimer1. Select another freq. or timer"));
}
#define CHECK_INTERVAL_MS 10000L
#define CHANGE_INTERVAL_MS 20000L
void loop()
{
static uint32_t lastTime = 0;
static uint32_t lastChangeTime = 0;
static uint32_t currTime;
static uint32_t multFactor = 0;
currTime = millis();
if (currTime - lastTime > CHECK_INTERVAL_MS)
{
printResult(currTime);
lastTime = currTime;
if (currTime - lastChangeTime > CHANGE_INTERVAL_MS)
{
//setInterval(unsigned long interval, timerCallback callback)
multFactor = (multFactor + 1) % 2;
// interval (in ms) and duration (in milliseconds). Duration = 0 or not specified => run indefinitely
// bool setInterval(unsigned long interval, timer_callback callback, unsigned long duration)
ITimer1.setFrequency(TIMER1_FREQUENCY / (multFactor + 1), TimerHandler1);
Serial.print(F("Changing Frequency, Timer1 = "));
Serial.println(TIMER1_FREQUENCY / (multFactor + 1));
lastChangeTime = currTime;
}
}
}