Wide ResNet (depth = 28, wide = 10)
----------------------------------------------------------------
Layer (type) Output Shape Param #
================================================================
Conv2d-1 [-1, 16, 32, 32] 448
BatchNorm2d-2 [-1, 16, 32, 32] 32
Conv2d-3 [-1, 160, 32, 32] 23,200
Dropout-4 [-1, 160, 32, 32] 0
BatchNorm2d-5 [-1, 160, 32, 32] 320
Conv2d-6 [-1, 160, 32, 32] 230,560
Conv2d-7 [-1, 160, 32, 32] 2,720
wide_basic-8 [-1, 160, 32, 32] 0
BatchNorm2d-9 [-1, 160, 32, 32] 320
Conv2d-10 [-1, 160, 32, 32] 230,560
Dropout-11 [-1, 160, 32, 32] 0
BatchNorm2d-12 [-1, 160, 32, 32] 320
Conv2d-13 [-1, 160, 32, 32] 230,560
wide_basic-14 [-1, 160, 32, 32] 0
BatchNorm2d-15 [-1, 160, 32, 32] 320
Conv2d-16 [-1, 160, 32, 32] 230,560
Dropout-17 [-1, 160, 32, 32] 0
BatchNorm2d-18 [-1, 160, 32, 32] 320
Conv2d-19 [-1, 160, 32, 32] 230,560
wide_basic-20 [-1, 160, 32, 32] 0
BatchNorm2d-21 [-1, 160, 32, 32] 320
Conv2d-22 [-1, 160, 32, 32] 230,560
Dropout-23 [-1, 160, 32, 32] 0
BatchNorm2d-24 [-1, 160, 32, 32] 320
Conv2d-25 [-1, 160, 32, 32] 230,560
wide_basic-26 [-1, 160, 32, 32] 0
BatchNorm2d-27 [-1, 160, 32, 32] 320
Conv2d-28 [-1, 320, 32, 32] 461,120
Dropout-29 [-1, 320, 32, 32] 0
BatchNorm2d-30 [-1, 320, 32, 32] 640
Conv2d-31 [-1, 320, 16, 16] 921,920
Conv2d-32 [-1, 320, 16, 16] 51,520
wide_basic-33 [-1, 320, 16, 16] 0
BatchNorm2d-34 [-1, 320, 16, 16] 640
Conv2d-35 [-1, 320, 16, 16] 921,920
Dropout-36 [-1, 320, 16, 16] 0
BatchNorm2d-37 [-1, 320, 16, 16] 640
Conv2d-38 [-1, 320, 16, 16] 921,920
wide_basic-39 [-1, 320, 16, 16] 0
BatchNorm2d-40 [-1, 320, 16, 16] 640
Conv2d-41 [-1, 320, 16, 16] 921,920
Dropout-42 [-1, 320, 16, 16] 0
BatchNorm2d-43 [-1, 320, 16, 16] 640
Conv2d-44 [-1, 320, 16, 16] 921,920
wide_basic-45 [-1, 320, 16, 16] 0
BatchNorm2d-46 [-1, 320, 16, 16] 640
Conv2d-47 [-1, 320, 16, 16] 921,920
Dropout-48 [-1, 320, 16, 16] 0
BatchNorm2d-49 [-1, 320, 16, 16] 640
Conv2d-50 [-1, 320, 16, 16] 921,920
wide_basic-51 [-1, 320, 16, 16] 0
BatchNorm2d-52 [-1, 320, 16, 16] 640
Conv2d-53 [-1, 640, 16, 16] 1,843,840
Dropout-54 [-1, 640, 16, 16] 0
BatchNorm2d-55 [-1, 640, 16, 16] 1,280
Conv2d-56 [-1, 640, 8, 8] 3,687,040
Conv2d-57 [-1, 640, 8, 8] 205,440
wide_basic-58 [-1, 640, 8, 8] 0
BatchNorm2d-59 [-1, 640, 8, 8] 1,280
Conv2d-60 [-1, 640, 8, 8] 3,687,040
Dropout-61 [-1, 640, 8, 8] 0
BatchNorm2d-62 [-1, 640, 8, 8] 1,280
Conv2d-63 [-1, 640, 8, 8] 3,687,040
wide_basic-64 [-1, 640, 8, 8] 0
BatchNorm2d-65 [-1, 640, 8, 8] 1,280
Conv2d-66 [-1, 640, 8, 8] 3,687,040
Dropout-67 [-1, 640, 8, 8] 0
BatchNorm2d-68 [-1, 640, 8, 8] 1,280
Conv2d-69 [-1, 640, 8, 8] 3,687,040
wide_basic-70 [-1, 640, 8, 8] 0
BatchNorm2d-71 [-1, 640, 8, 8] 1,280
Conv2d-72 [-1, 640, 8, 8] 3,687,040
Dropout-73 [-1, 640, 8, 8] 0
BatchNorm2d-74 [-1, 640, 8, 8] 1,280
Conv2d-75 [-1, 640, 8, 8] 3,687,040
wide_basic-76 [-1, 640, 8, 8] 0
BatchNorm2d-77 [-1, 640, 8, 8] 1,280
Linear-78 [-1, 10] 6,410
Wide_ResNet-79 [-1, 10] 0
================================================================
Total params: 36,489,290
Trainable params: 36,489,290
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.01
Forward/backward pass size (MB): 63.38
Params size (MB): 139.20
Estimated Total Size (MB): 202.58
----------------------------------------------------------------
- Resize, RandomCrop, Rotation, Flipping
- Label Smoothing (alpha = 0.2)
- Mix Up Augmentation (alpha = 1.0)
- Cut Mix Augmentation (alpha = 1.0)
- Cut Out Augmentation (rate >= 0.80)
- Optimizer: Stochatic Gradient Descent (initial lr = 0.1)
- Scheduler : Cyclic learning rate and Cosine learning rate (Tmax = 100)
- Progressive Resizing (32 -> 36 -> 40)
- Test Time Augmentation
CIFAR-10 datasets
Epoch [230/230] Iter[100/100]
Loss on testing data: 0.3858
Accuracy on testing data: 96.6800%
Checkpoint weights: https://drive.google.com/file/d/1UQkhsb-OAWa7_K7tbSgyH6wDa4E67pho/view?usp=sharing