-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLTSAhourlySpectra_170130_step1.m
380 lines (334 loc) · 11.8 KB
/
LTSAhourlySpectra_170130_step1.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
% LTSAdailySpectra.m
% 141103 smw
% reworked from LTSAdailySpectra_midFreq.m which was from
% LTSAmonthlySpectra.m
% make mat file with daily spectra averages from LTSAs, including time (i.e. day)
% and number of tave bins used for average
%
% 160823 smw
% added filter for removing hydrophone strum
% first used for Palmyra Iceberg (ie Matsumoto) PAL 04, 05, 06
% use threshold/energy detector at 10 Hz
% also cleaned up some stuff...
%
% 170130 smw
% modified (removed low freq stuff) for non-decimated full bandwidth data
% goal to provide daily ave spectrograms to look for level changes in the
% sperm whale click band.
%
clear variables
global PARAMS
% Load Harp data summary:
harpDataSummaryCSV = 'C:\Users\Hosei\Desktop\HARPdataSummary_20190514.csv';
harpDataSummary = readtable(harpDataSummaryCSV);
TFsFolder = 'E:\TFs';
% initial changable parameters:
% rm_fifo = 0; % remove FIFO via interpolation on spectra. 0=no, 1=yes
% fsflag = 1; % sample rate flag for FIFO removal 1=80kHz, 0=all other
NA = 5; % number of time slices (spectral averages) to read per raw file
tres = 2; % time bin resolution 0 = month, 1 = days, 2 = hours
% strum filter parameters - different for different sites, deployment,
% hydrophone sensitivities, etc.
% % OCNMS:
% if 1
% fbin = 5; % 4Hz
% sthr = 20; % strum filter threashold [dB re count^2/Hz] no TF applied
% end
% if 0
% % CE01test
% fbin = 8;
% sthr = 0;
% end
% % sthr = 100; % set sthr high for no strum filter
% get LTSA file names and tf file name
[fn_files, fn_pathname] = uigetfile('*.ltsa','Pick LTSA(s)','MultiSelect','on');
% sort if multiple files selected
fn_files = sort(fn_files);
% from LTSA name, determine deployment and PreAmp number
deplMatch = [];
iFile = 1;
if iscell(fn_files)
fnFileForTF = fn_files{1};
else
fnFileForTF = fn_files;
end
while isempty(deplMatch) && iFile<=size(harpDataSummary,1)
dBaseName = strrep(harpDataSummary.Data_ID{iFile},'-','');
deplMatch = strfind(lower(fnFileForTF),lower(dBaseName));
iFile = iFile+1;
end
if isempty(deplMatch)
error('Error, no matching deployment in HARP database)')
else
deplMatchIdx = iFile-1;
end
tfNum = harpDataSummary.PreAmp{deplMatchIdx};
% Search TFs folder for the appropriate preamp
tfList = dir(TFsFolder);
tfMatch = [];
iTF = 1;
while isempty(tfMatch) && iTF<=size(tfList,1)
tfMatch = strfind(tfList(iTF).name,tfNum);
iTF = iTF+1;
end
if isempty(tfMatch)
warning('No matching TF in TFs folder)')
suggestedTFPath = [];
else
tfMatchIdx = iTF-1;
suggestedTFPath = fullfile(tfList(tfMatchIdx).folder,tfList(tfMatchIdx).name);
end
[tf_file, tf_pathname ] = uigetfile(fullfile(suggestedTFPath,'*.tf'),'Pick Transfer Function');
outpath = uigetdir(pwd,'Choose Output Directory');
outname = inputdlg('Enter Output Filename','Enter Output Filename',1,...
{[dBaseName '_DailyAves.mat']});
outfile = fullfile(outpath,char(outname));
tic
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
disp([ 'Transfer function: ' tf_file ]);
tf = fullfile(tf_pathname, tf_file);
loadTF(tf); % open and read Transfer function file:
disp('Calculating Averages for:')
if iscell(fn_files) % then it's a cell full of filenames
fn = cell(length(fn_files),1);
for k = 1:length(fn_files)
fn{k} = fullfile(fn_pathname, fn_files{k});
disp(fn{k});
end
else % it's just one file, but put into cell
fn = cell(1,1);
fn{1} = fullfile(fn_pathname,fn_files);
disp(fn);
end
nltsas = length(fn); % number of LTSA files
mnum2secs = 24*60*60;
% read ltsa headers and sum the total number of raw files for
% pre-allocating vectors/matrices
nrftot = 0;
for k = 1:nltsas % loop over files
PARAMS.ltsa = []; % clear
PARAMS.ltsa.ftype = 1;
[PARAMS.ltsa.inpath,infile,ext] = fileparts(fn{k});
PARAMS.ltsa.infile = [infile,ext];
read_ltsahead % better would be to just read nrftot instead of whole header
nrf = PARAMS.ltsa.nrftot;
nrftot = nrftot + nrf;
if k == 1 % read and set some useful parameters that should be the same across all ltsas
nf = PARAMS.ltsa.nf;
nave = PARAMS.ltsa.nave(1);
freq = PARAMS.ltsa.freq;
end
end
% correct TF for more than one measurement at a specific frequency
[C,ia,ic] = unique(PARAMS.tf.freq);
if length(ia) ~= length(ic)
disp(['Error: TF file ',tf,' is not monotonically increasing'])
end
tf_freq = PARAMS.tf.freq(ia);
tf_uppc = PARAMS.tf.uppc(ia);
% Transfer function correction vector
Ptf = interp1(tf_freq,tf_uppc,freq,'linear','extrap');
Ptf2 = Ptf'*ones(1,3); % to add to
% fill up header matrix H
H = zeros(nrftot,3); % 3 columns: filenumber, datenumber, byteloc in filenumber
cnt1 = 1;
cnt2 = 0;
for k = 1:nltsas % loop over files
PARAMS.ltsa = []; % clear
PARAMS.ltsa.ftype = 1;
[PARAMS.ltsa.inpath,infile,ext] = fileparts(fn{k});
PARAMS.ltsa.infile = [infile,ext];
read_ltsahead % better would be to just read nrftot instead of whole header
nrf = PARAMS.ltsa.nrftot;
fs0 = PARAMS.ltsa.fs;
knave = PARAMS.ltsa.nave;
cnt2 = cnt2 + nrf;
H(cnt1:cnt2,1) = k.*ones(nrf,1);
H(cnt1:cnt2,2) = PARAMS.ltsa.dnumStart;
H(cnt1:cnt2,3) = PARAMS.ltsa.byteloc;
cnt1 = cnt2 + 1;
end
% % for removing 80kHz FIFO
% if max(knave) == 38
% fsflag = 1;
% else
% fsflag = 0;
% end
dvec = datevec(H(:,2));
if tres == 0
mnum = dvec(:,1).*12 + dvec(:,2); % month number where 1 = Jan 2000
elseif tres == 1
mnum = floor(datenum(dvec)); % day number where 1 = Jan 2000
elseif tres == 2
mnum = floor(datenum(dvec) * 24); % hour
else
disp(['Error: unknown time resolution = ',num2str(tres)])
end
mnumMin = min(mnum);
mnumMax = max(mnum);
%
dur = unique(mnum); % unique averaging time bins
nm = length(dur); % number of ave time bins
% pwrA = zeros(nf,cnt2);
cnt1 = 1;
cnt2 = 0;
ptime = zeros(nm,1); % start time of bin average
nmave = zeros(nm,2); % number of averages possible and used(ie not filtered out) for each bin
mpwr = ones(nf,nm); % mean power over time period
mpwrtf = ones(nf,nm); % mean power with TF applied
mpwrTF = ones(nf,nm); % mean power with FIFO interp & TF applied
% mfpwr = ones(nf,nm);
% spwr = ones(nf,nm);
% sfpwr = ones(nf,nm);
% mf = ones(nf,nm);
% sf1 = ones(nf,nm);
% sf2 = ones(nf,nm);
for m = 1:nm % loop over time average bins
if tres == 0
disp(['Month = ',num2str(dur(m))])
elseif tres == 1
disp(['Day = ',num2str(dur(m))])
elseif tres == 2
disp(['Hour = ',num2str(dur(m))])
end
I = [];
I = find(mnum == dur(m));
nrfM = length(I);
pwrM = [];
pwrM = zeros(nf,NA*nrfM);
fnum = [];
fnum = unique(H(I,1));
nfiles = length(fnum);
NBO = 0; % number of averages (taves) read for mean spectra
for f = 1:nfiles % loop over files with same month (probably only 2 max)
% open ltsa file
% fid = fopen([PARAMS.ltsa.inpath,fn{fnum(f)}],'r');
fid = fopen(fn{fnum(f)},'r');
% samples to skip over in ltsa file
J = [];
J = find(H(I,1) == fnum(f));
nrfRead = length(J);
skip = H(I(J(1)),3); % get first byteloc of file for that month
fseek(fid,skip,-1); % skip over header + other data
ptime(m) = H(I(J(1)),2); % save 1st time of this time unit
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% number of time slices to use for calcs
% need to set 'xxxx*int8' value
prcsn = [num2str(NA*nf),'*int8'];
% allocate memory
pwrF = [];
NB = NA * nrfRead;
pwrF = zeros(nf,NB);
% number of time slices to skip on each read
SA = nave - NA;
skip = nf*(SA);
% initial time slice to start at
if fs0 == 2000 || fs0 == 200000
% IA = (15+5)*nf;
IA = (nave + NA)*nf; % this should work better for 320kHz vs commented 200kHz hardwired above
elseif fs0 == 3200 || fs0 == 320000
IA = (nave + NA-1)*nf;
else
disp('Error: unknown sample rate')
disp(['fs0 = ',num2str(fs0)])
end
fseek(fid,IA,-0);
% read data into File power
[pwrF,count] = fread(fid,[nf,NB],prcsn,skip);
if count ~= nf*NB
disp('error = did not read enough data')
% NBO = NB;
NB = floor(count/nf);
% disp(['NBO = ',num2str(NBO)])
disp(['NB = ',num2str(NB)])
end
% fill up Month power
if nfiles == 1
pwrM = pwrF;
NBO = NB;
else
if f == 1
pwrM(1:nf,1:NB) = pwrF;
NBO = NB;
else
pwrM(1:nf,NBO+1:NBO+NB) = pwrF;
NBO = NBO+NB;
end
end
disp(['Number of 5s time bins in this Average Time Bin = ',num2str(NBO)])
fclose(fid);
end % end for f
% % remove 5s time bins with strumming
% K = [];
% K = find(pwrM(fbin,:) < sthr);
% if ~isempty(K)
% pwrN = pwrM(:,K);
% NBF = size(pwrN,2);
% disp(['Number of 5s time bins after strumming filter = ',num2str(NBF)])
% else
% disp(['Error: no time bins with levels less than: ',num2str(sthr)])
% continue
% end
nmave(m,1) = NBO;
% nmave(m,2) = NBF;
% cnt2 = cnt2 + size(pwrN,2);
cnt2 = cnt2 + size(pwrM,2);
% pwrA(1:nf,cnt1:cnt2) = pwrM;
cnt1 = cnt2 + 1;
% mean - these are smooth (floating point pwr values)
% mpwr(1:nf,m) = mean(pwrN,2);
mpwr(1:nf,m) = mean(pwrM,2);
mpwrtf(1:nf,m) = mpwr(1:nf,m) + Ptf'; % add transfer function
% running average to remove FIFO spikes
% ws = 5; % window size: number of samples
% mfpwr(1:nf,m) = filter(ones(1,ws)/ws,1,mpwr(1:nf,m));
% mf(1:nf,m) = mfpwr(1:nf,m) + Ptf'; % add transfer function
% standard deviation
% spwr(1:nf,m) = std(pwrM,1,2);
% sfpwr(1:nf,m) = filter(ones(1,ws)/ws,1,spwr(1:nf,m));
% sf1(1:nf,m) = mfpwr(1:nf,m) + sfpwr(1:nf,m) + Ptf';
% sf2(1:nf,m) = mfpwr(1:nf,m) - sfpwr(1:nf,m) + Ptf';
% % Remove FIFO via inperpolation on spectra
% if rm_fifo
% if fs0 == 2000
% if fsflag
% fund = 20; % original fs=80kHz
% else
% fund = 50;
% end
% elseif fs0 == 3200
% fund = 80;
% else
% fprintf('Unknown sample rate %d encountered during rmFIFO\nExiting!\n', ...
% fs0);
% end
% nomult = 19;
% for mult = 1:nomult %going up to 1000 Hz
% ind2 = [];
% ind2 = find(abs(pwrN(mult*fund+1,:)-pwrN(mult*fund-1,:))>.8);
% if ~isempty(ind2)
% %diference to add to each increment for interpolation
% dff(ind2) = (pwrN(mult*fund+3,ind2)-pwrN(mult*fund-1,ind2))/4;
% pwrN(mult*fund,ind2) = pwrN(mult*fund-1,ind2)+dff(ind2);
% pwrN(mult*fund+1,ind2) = pwrN(mult*fund-1,ind2)+dff(ind2)*2;
% pwrN(mult*fund+2,ind2) = pwrN(mult*fund-1,ind2)+dff(ind2)*3;
% end
% end
% % mean - these are smooth
% pwrN = bsxfun(@plus, pwrN, Ptf'); % add in transfer function!
% mpwrTF(1:nf,m) = mean(pwrN,2);
% end
end
% if fs0 == 3200 % only save up to 1000 Hz to be comparable to fs0 = 2000
% nnf = 1001;
% mpwr = mpwr(1:nnf,:);
% mpwrTF = mpwrTF(1:nnf,:);
% freq = freq(1:nnf);
% end
% save results
if 1
save(outfile,'ptime','mpwr','mpwrtf','freq','nmave','tf_file','dBaseName','tf')
end
t = toc;
disp(' ')
disp(['Time Elapsed: Spectra from LTSA ', num2str(t),' secs'])