forked from 12dmodel/deep_motion_mag
-
Notifications
You must be signed in to change notification settings - Fork 1
/
modules.py
72 lines (64 loc) · 2.77 KB
/
modules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
from __future__ import division
import tensorflow as tf
from ops import *
from utils import *
import numpy as np
def res_manipulator(enc_a,
enc_b,
amplification_factor,
layer_dims,
num_resblk,
num_conv,
num_aft_conv=0,
probe_pt=None):
diff = (enc_b - enc_a)
if probe_pt is not None:
probe_pt["mani_diff"] = diff
for i in range(num_conv):
p = 3
k = 7
diff = tf.pad(diff, [[0, 0], [p, p], [p, p], [0, 0]], "REFLECT")
cname = 'mani_conv{}'.format(i)
diff = tf.nn.relu(conv2d(diff, layer_dims, k, 1, padding='VALID', name=cname + 'c'))
if probe_pt is not None:
probe_pt["mani_after_conv"] = diff
diff = diff * expand_dims_1_to_4(amplification_factor - 1.0)
if probe_pt is not None:
probe_pt["mani_after_mult"] = diff
for i in range(num_aft_conv):
diff = tf.pad(diff, [[0, 0], [1, 1], [1, 1], [0, 0]], "REFLECT")
cname = 'mani_aft_conv{}'.format(i)
diff = conv2d(diff, layer_dims, 3, 1, padding='VALID', name=cname + 'c')
for i in range(num_resblk):
diff = residual_block(diff, layer_dims, 3, 1, name='mani_resblk{}'.format(i))
if probe_pt is not None:
probe_pt["mani_after_res"] = diff
return enc_b + diff
def res_encoder(image, layer_dims, num_resblk):
# Justin Johnson's model from https://github.com/jcjohnson/fast-neural-style/
# The network with 9 blocks consists of: c7s1-32, d64, d128, R128, R128, R128,
# R128, R128, R128, R128, R128, R128, u64, u32, c7s1-3
c0 = tf.pad(image, [[0, 0], [3, 3], [3, 3], [0, 0]], "REFLECT")
c1 = tf.nn.relu(conv2d(c0, layer_dims / 2, 7, 1, padding='VALID', name='enc_conv1_c'))
c2 = tf.nn.relu(conv2d(c1, layer_dims, 3, 2, name='enc_conv2_c'))
# define G network with 9 resnet blocks
r = c2
for i in range(num_resblk):
r = residual_block(r, layer_dims, 3, 1, name='encoder_resblk{}'.format(i))
return r
def res_decoder(activation,
layer_dims,
out_channels,
num_resblk):
r = activation
for i in range(num_resblk):
r = residual_block(r, layer_dims, 3, 1, name='decoder_resblk{}'.format(i))
up = tf.compat.v1.image.resize_nearest_neighbor(r, tf.shape(r)[1:3] * 2)
up = tf.pad(up, [[0, 0], [1, 1], [1, 1], [0, 0]], "REFLECT")
d2 = tf.nn.relu(conv2d(up, int(layer_dims / 2), 3, 1, padding='VALID', name='dec_conv2_c'))
d2 = tf.pad(d2, [[0, 0], [3, 3], [3, 3], [0, 0]], "REFLECT")
out = conv2d(d2, out_channels, 7, 1, padding='VALID', name='pred_conv')
return out
def L1_loss(in_, target):
with tf.variable_scope("l1_loss"):
return tf.reduce_mean(tf.abs(in_ - target))