Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Bring back loss information for multiple outputs #20023

Merged
merged 7 commits into from
Jul 24, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions keras/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,7 @@
from keras.api import Regularizer
from keras.api import Sequential
from keras.api import StatelessScope
from keras.api import SymbolicScope
from keras.api import Variable
from keras.api import __version__
from keras.api import activations
Expand Down
1 change: 1 addition & 0 deletions keras/api/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,6 +33,7 @@
from keras.api import utils
from keras.src.backend.common.keras_tensor import KerasTensor
from keras.src.backend.common.stateless_scope import StatelessScope
from keras.src.backend.common.symbolic_scope import SymbolicScope
from keras.src.backend.exports import Variable
from keras.src.backend.exports import device
from keras.src.backend.exports import name_scope
Expand Down
1 change: 1 addition & 0 deletions keras/api/_tf_keras/keras/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,6 +31,7 @@
from keras.api._tf_keras.keras import preprocessing
from keras.src.backend.common.keras_tensor import KerasTensor
from keras.src.backend.common.stateless_scope import StatelessScope
from keras.src.backend.common.symbolic_scope import SymbolicScope
from keras.src.backend.exports import Variable
from keras.src.backend.exports import device
from keras.src.backend.exports import name_scope
Expand Down
2 changes: 2 additions & 0 deletions keras/src/backend/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,8 @@
from keras.src.backend.common.stateless_scope import StatelessScope
from keras.src.backend.common.stateless_scope import get_stateless_scope
from keras.src.backend.common.stateless_scope import in_stateless_scope
from keras.src.backend.common.symbolic_scope import SymbolicScope
from keras.src.backend.common.symbolic_scope import in_symbolic_scope
from keras.src.backend.common.variables import AutocastScope
from keras.src.backend.common.variables import get_autocast_scope
from keras.src.backend.common.variables import is_float_dtype
Expand Down
23 changes: 23 additions & 0 deletions keras/src/backend/common/symbolic_scope.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,23 @@
from keras.src.api_export import keras_export
from keras.src.backend.common import global_state


@keras_export("keras.SymbolicScope")
class SymbolicScope:
"""Scope to indicate the symbolic stage."""

def __enter__(self):
self.original_scope = get_symbolic_scope()
global_state.set_global_attribute("symbolic_scope", self)
return self

def __exit__(self, *args, **kwargs):
global_state.set_global_attribute("symbolic_scope", self.original_scope)


def in_symbolic_scope():
return global_state.get_global_attribute("symbolic_scope") is not None


def get_symbolic_scope():
return global_state.get_global_attribute("symbolic_scope")
26 changes: 26 additions & 0 deletions keras/src/backend/common/symbolic_scope_test.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,26 @@
import numpy as np

from keras.src import ops
from keras.src import testing
from keras.src.backend.common.symbolic_scope import SymbolicScope
from keras.src.backend.common.symbolic_scope import in_symbolic_scope


class TestSymbolicScope(testing.TestCase):
def test_basic_flow(self):

# Define a function that behaves differently according to
# `in_symbolic_scope`.
def compute_loss(y, y_pred):
if in_symbolic_scope():
return ops.zeros_like(y)
return ops.add(y, y_pred)

y = ops.ones(shape=(2,))
y_pred = ops.ones(shape=(2,))
with SymbolicScope():
loss = compute_loss(y, y_pred)
self.assertAllClose(loss, np.zeros((2,)))

loss = compute_loss(y, y_pred)
self.assertAllClose(loss, 2 * np.ones((2,)))
3 changes: 2 additions & 1 deletion keras/src/backend/jax/core.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,7 @@
from keras.src.backend.common import standardize_dtype
from keras.src.backend.common.keras_tensor import KerasTensor
from keras.src.backend.common.stateless_scope import StatelessScope
from keras.src.backend.common.symbolic_scope import SymbolicScope
from keras.src.backend.jax import distribution_lib

SUPPORTS_SPARSE_TENSORS = True
Expand Down Expand Up @@ -101,7 +102,7 @@ def cast(x, dtype):

# Shape / dtype / sparseness inference util
def compute_output_spec(fn, *args, **kwargs):
with StatelessScope():
with StatelessScope(), SymbolicScope():
built_in_types = (type(None), int, float, str, bool, complex, bytes)

# First, separate symbolic args from other args
Expand Down
3 changes: 2 additions & 1 deletion keras/src/backend/numpy/core.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@
from keras.src.backend.common.dtypes import result_type
from keras.src.backend.common.keras_tensor import KerasTensor
from keras.src.backend.common.stateless_scope import StatelessScope
from keras.src.backend.common.symbolic_scope import SymbolicScope

SUPPORTS_SPARSE_TENSORS = False

Expand Down Expand Up @@ -88,7 +89,7 @@ def vectorized_map(function, elements):

# Shape / dtype inference util
def compute_output_spec(fn, *args, **kwargs):
with StatelessScope():
with StatelessScope(), SymbolicScope():

def has_none_shape(x):
if isinstance(x, KerasTensor):
Expand Down
14 changes: 13 additions & 1 deletion keras/src/backend/numpy/trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -97,7 +97,10 @@ def _symbolic_build(self, data_batch):
self._compile_metrics is not None
and not self._compile_metrics.built
)
if model_unbuilt or compile_metrics_unbuilt:
compile_loss_unbuilt = (
self._compile_loss is not None and not self._compile_loss.built
)
if model_unbuilt or compile_metrics_unbuilt or compile_loss_unbuilt:
# Create symbolic tensors matching an input batch.

def to_symbolic_input(v):
Expand Down Expand Up @@ -133,6 +136,15 @@ def to_symbolic_input(v):
y_pred,
sample_weight=sample_weight,
)
if compile_loss_unbuilt:
# Build `CompileLoss` state with `backend.compute_output_spec`.
backend.compute_output_spec(
self._compute_loss,
x,
y,
y_pred,
sample_weight=sample_weight,
)
self._post_build()

def fit(
Expand Down
3 changes: 2 additions & 1 deletion keras/src/backend/tensorflow/core.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,7 @@
from keras.src.backend.common.name_scope import name_scope as base_name_scope
from keras.src.backend.common.stateless_scope import StatelessScope
from keras.src.backend.common.stateless_scope import in_stateless_scope
from keras.src.backend.common.symbolic_scope import SymbolicScope
from keras.src.backend.tensorflow.sparse import sparse_to_dense
from keras.src.utils.naming import auto_name

Expand Down Expand Up @@ -182,7 +183,7 @@ def cast(x, dtype):


def compute_output_spec(fn, *args, **kwargs):
with StatelessScope():
with StatelessScope(), SymbolicScope():
graph_name = auto_name("scratch_graph")
with tf.__internal__.FuncGraph(graph_name).as_default():

Expand Down
3 changes: 2 additions & 1 deletion keras/src/backend/torch/core.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,7 @@
from keras.src.backend.common.stateless_scope import StatelessScope
from keras.src.backend.common.stateless_scope import get_stateless_scope
from keras.src.backend.common.stateless_scope import in_stateless_scope
from keras.src.backend.common.symbolic_scope import SymbolicScope
from keras.src.backend.config import floatx

SUPPORTS_SPARSE_TENSORS = False
Expand Down Expand Up @@ -335,7 +336,7 @@ def symbolic_call(fn, args, kwargs, fill_value):
)
return fn(*eager_args, **eager_kwargs)

with StatelessScope(), torch.no_grad():
with StatelessScope(), SymbolicScope(), torch.no_grad():
outputs = symbolic_call(fn, args, kwargs, fill_value=83)

none_in_shape = any(
Expand Down
6 changes: 5 additions & 1 deletion keras/src/layers/layer.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,6 +32,7 @@
from keras.src.backend import KerasTensor
from keras.src.backend.common import global_state
from keras.src.backend.common.name_scope import current_path
from keras.src.backend.common.symbolic_scope import in_symbolic_scope
from keras.src.distribution import distribution_lib
from keras.src.dtype_policies import DTypePolicyMap
from keras.src.layers import input_spec
Expand Down Expand Up @@ -1139,7 +1140,10 @@ def _get_regularization_losses(self):
for variable in self.trainable_weights:
if variable.regularizer is None:
continue
if backend.in_stateless_scope():
if backend.in_stateless_scope() and not in_symbolic_scope():
# If in symbolic scope, we might get `None` from
# `get_current_value` in `backend.compute_output_spec`. So we
# assign `variable` instead.
v = backend.get_stateless_scope().get_current_value(variable)
else:
v = variable
Expand Down
47 changes: 24 additions & 23 deletions keras/src/models/model_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -239,14 +239,13 @@ def test_functional_list_outputs_list_losses(self):
# Fit the model to make sure compile_metrics are built
hist = model.fit(x, (y1, y2), batch_size=2, epochs=1, verbose=0)
hist_keys = sorted(hist.history.keys())
# TODO `tf.keras` also outputs individual losses for outputs
ref_keys = sorted(
[
"loss",
# "output_a_loss",
"output_a_loss",
"output_a_mean_squared_error",
"output_b_accuracy",
# "output_b_loss",
"output_b_loss",
"output_b_mean_squared_error",
]
)
Expand All @@ -270,16 +269,15 @@ def test_functional_list_outputs_list_losses_abbr(self):
# Fit the model to make sure compile_metrics are built
hist = model.fit(x, (y1, y2), batch_size=2, epochs=1, verbose=0)
hist_keys = sorted(hist.history.keys())
# TODO `tf.keras` also outputs individual losses for outputs
ref_keys = sorted(
[
"loss",
# "output_a_loss",
"output_a_loss",
"output_a_bce",
"output_a_mae",
"output_a_mse",
"output_b_acc",
# "output_b_loss",
"output_b_loss",
"output_b_mse",
]
)
Expand All @@ -303,14 +301,13 @@ def test_functional_list_outputs_nested_list_losses(self):
# Fit the model to make sure compile_metrics are built
hist = model.fit(x, (y1, y2), batch_size=2, epochs=1, verbose=0)
hist_keys = sorted(hist.history.keys())
# TODO `tf.keras` also outputs individual losses for outputs
ref_keys = sorted(
[
"loss",
# "output_a_loss",
"output_a_loss",
"output_a_mean_squared_error",
"output_b_accuracy",
# "output_b_loss",
"output_b_loss",
"output_b_mean_squared_error",
]
)
Expand Down Expand Up @@ -351,15 +348,14 @@ def test_functional_dict_outputs_dict_losses(self):
verbose=0,
)
hist_keys = sorted(hist.history.keys())
# TODO `tf.keras` also outputs individual losses for outputs
ref_keys = sorted(
[
"loss",
# "output_a_loss",
"output_a_loss",
"output_a_mean_squared_error",
"output_a_weighted_mean_squared_error",
"output_b_accuracy",
# "output_b_loss",
"output_b_loss",
"output_b_mean_squared_error",
"output_b_weighted_accuracy",
"output_b_weighted_mean_squared_error",
Expand Down Expand Up @@ -396,15 +392,14 @@ def test_functional_list_outputs_dict_losses_metrics(self):
# Fit the model to make sure compile_metrics are built
hist = model.fit(x, (y1, y2), batch_size=2, epochs=1, verbose=0)
hist_keys = sorted(hist.history.keys())
# TODO `tf.keras` also outputs individual losses for outputs
ref_keys = sorted(
[
"loss",
# "output_a_loss",
"output_a_loss",
"output_a_mean_squared_error",
"output_a_weighted_mean_squared_error",
"output_b_accuracy",
# "output_b_loss",
"output_b_loss",
"output_b_mean_squared_error",
"output_b_weighted_accuracy",
"output_b_weighted_mean_squared_error",
Expand Down Expand Up @@ -436,18 +431,17 @@ def test_functional_list_outputs_dict_losses_metrics_uniq_weighted(self):
# Fit the model to make sure compile_metrics are built
hist = model.fit(x, (y1, y2), batch_size=2, epochs=1, verbose=0)
hist_keys = sorted(hist.history.keys())
# TODO `tf.keras` also outputs individual losses for outputs
# `output_b_accuracy` doesn't have `weighted_` in metric name.
# When a metric is only in weighted metrics, it skips `weighted_`
# prefix. This behavior matches`tf.keras`.
ref_keys = sorted(
[
"loss",
# "output_a_loss",
"output_a_loss",
"output_a_mean_squared_error",
"output_a_weighted_mean_squared_error",
"output_b_accuracy",
# "output_b_loss",
"output_b_loss",
"output_b_mean_squared_error",
]
)
Expand All @@ -472,13 +466,12 @@ def test_functional_list_outputs_dict_losses_partial_metrics(self):
# Fit the model to make sure compile_metrics are built
hist = model.fit(x, (y1, y2), batch_size=2, epochs=1, verbose=0)
hist_keys = sorted(hist.history.keys())
# TODO `tf.keras` also outputs individual losses for outputs
ref_keys = sorted(
[
"loss",
# "output_a_loss",
"output_a_loss",
"output_b_accuracy",
# "output_b_loss",
"output_b_loss",
"output_b_mean_squared_error",
]
)
Expand All @@ -500,7 +493,10 @@ def test_functional_dict_outputs_with_single_tensor(self):
"output_b": "binary_crossentropy",
},
)
model.fit(x, (y1, y2), batch_size=2, epochs=1, verbose=0)
hist = model.fit(x, (y1, y2), batch_size=2, epochs=1, verbose=0)
hist_keys = sorted(hist.history.keys())
ref_keys = sorted(["loss", "output_a_loss", "output_b_loss"])
self.assertListEqual(hist_keys, ref_keys)

def test_functional_list_outputs_with_custom_compute_loss(self):
model = _get_model_with_custom_compute_loss()
Expand All @@ -514,7 +510,12 @@ def test_functional_list_outputs_with_custom_compute_loss(self):
model.compile(
optimizer="sgd", loss=["mean_squared_error", "binary_crossentropy"]
)
model.fit(x, (y1, y2), batch_size=2, epochs=1, verbose=0)
hist = model.fit(x, (y1, y2), batch_size=2, epochs=1, verbose=0)
hist_keys = sorted(hist.history.keys())
ref_keys = sorted(
["binary_crossentropy_loss", "loss", "mean_squared_error_loss"]
)
self.assertListEqual(hist_keys, ref_keys)

def test_functional_list_outputs_dict_losses_invalid_keys(self):
model = _get_model_multi_outputs_list()
Expand Down
Loading