forked from haofeixu/aanet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
360 lines (286 loc) · 15.7 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
import torch
import time
from torch.utils.tensorboard import SummaryWriter
import torch.nn.functional as F
import os
from utils import utils
from utils.visualization import disp_error_img, save_images
from metric import d1_metric, thres_metric
class Model(object):
def __init__(self, args, logger, optimizer, aanet, device, start_iter=0, start_epoch=0,
best_epe=None, best_epoch=None):
self.args = args
self.logger = logger
self.optimizer = optimizer
self.aanet = aanet
self.device = device
self.num_iter = start_iter
self.epoch = start_epoch
self.best_epe = 999. if best_epe is None else best_epe
self.best_epoch = -1 if best_epoch is None else best_epoch
if not args.evaluate_only:
self.train_writer = SummaryWriter(self.args.checkpoint_dir)
def train(self, train_loader):
args = self.args
logger = self.logger
steps_per_epoch = len(train_loader)
device = self.device
self.aanet.train()
if args.freeze_bn:
def set_bn_eval(m):
classname = m.__class__.__name__
if classname.find('BatchNorm') != -1:
m.eval()
self.aanet.apply(set_bn_eval)
# Learning rate summary
base_lr = self.optimizer.param_groups[0]['lr']
offset_lr = self.optimizer.param_groups[1]['lr']
self.train_writer.add_scalar('base_lr', base_lr, self.epoch + 1)
self.train_writer.add_scalar('offset_lr', offset_lr, self.epoch + 1)
last_print_time = time.time()
for i, sample in enumerate(train_loader):
left = sample['left'].to(device) # [B, 3, H, W]
right = sample['right'].to(device)
gt_disp = sample['disp'].to(device) # [B, H, W]
mask = (gt_disp > 0) & (gt_disp < args.max_disp)
if args.load_pseudo_gt:
pseudo_gt_disp = sample['pseudo_disp'].to(device)
pseudo_mask = (pseudo_gt_disp > 0) & (pseudo_gt_disp < args.max_disp) & (~mask) # inverse mask
if not mask.any():
continue
pred_disp_pyramid = self.aanet(left, right) # list of H/12, H/6, H/3, H/2, H
if args.highest_loss_only:
pred_disp_pyramid = [pred_disp_pyramid[-1]] # only the last highest resolution output
disp_loss = 0
pseudo_disp_loss = 0
pyramid_loss = []
pseudo_pyramid_loss = []
# Loss weights
if len(pred_disp_pyramid) == 5:
pyramid_weight = [1 / 3, 2 / 3, 1.0, 1.0, 1.0] # AANet and AANet+
elif len(pred_disp_pyramid) == 4:
pyramid_weight = [1 / 3, 2 / 3, 1.0, 1.0]
elif len(pred_disp_pyramid) == 3:
pyramid_weight = [1.0, 1.0, 1.0] # 1 scale only
elif len(pred_disp_pyramid) == 1:
pyramid_weight = [1.0] # highest loss only
else:
raise NotImplementedError
assert len(pyramid_weight) == len(pred_disp_pyramid)
for k in range(len(pred_disp_pyramid)):
pred_disp = pred_disp_pyramid[k]
weight = pyramid_weight[k]
if pred_disp.size(-1) != gt_disp.size(-1):
pred_disp = pred_disp.unsqueeze(1) # [B, 1, H, W]
pred_disp = F.interpolate(pred_disp, size=(gt_disp.size(-2), gt_disp.size(-1)),
mode='bilinear', align_corners=False) * (gt_disp.size(-1) / pred_disp.size(-1))
pred_disp = pred_disp.squeeze(1) # [B, H, W]
curr_loss = F.smooth_l1_loss(pred_disp[mask], gt_disp[mask],
reduction='mean')
disp_loss += weight * curr_loss
pyramid_loss.append(curr_loss)
# Pseudo gt loss
if args.load_pseudo_gt:
pseudo_curr_loss = F.smooth_l1_loss(pred_disp[pseudo_mask], pseudo_gt_disp[pseudo_mask],
reduction='mean')
pseudo_disp_loss += weight * pseudo_curr_loss
pseudo_pyramid_loss.append(pseudo_curr_loss)
total_loss = disp_loss + pseudo_disp_loss
self.optimizer.zero_grad()
total_loss.backward()
self.optimizer.step()
self.num_iter += 1
if self.num_iter % args.print_freq == 0:
this_cycle = time.time() - last_print_time
last_print_time += this_cycle
logger.info('Epoch: [%3d/%3d] [%5d/%5d] time: %4.2fs disp_loss: %.3f' %
(self.epoch + 1, args.max_epoch, i + 1, steps_per_epoch, this_cycle,
disp_loss.item()))
if self.num_iter % args.summary_freq == 0:
img_summary = dict()
img_summary['left'] = left
img_summary['right'] = right
img_summary['gt_disp'] = gt_disp
if args.load_pseudo_gt:
img_summary['pseudo_gt_disp'] = pseudo_gt_disp
# Save pyramid disparity prediction
for s in range(len(pred_disp_pyramid)):
# Scale from low to high, reverse
save_name = 'pred_disp' + str(len(pred_disp_pyramid) - s - 1)
save_value = pred_disp_pyramid[s]
img_summary[save_name] = save_value
pred_disp = pred_disp_pyramid[-1]
if pred_disp.size(-1) != gt_disp.size(-1):
pred_disp = pred_disp.unsqueeze(1) # [B, 1, H, W]
pred_disp = F.interpolate(pred_disp, size=(gt_disp.size(-2), gt_disp.size(-1)),
mode='bilinear', align_corners=False) * (gt_disp.size(-1) / pred_disp.size(-1))
pred_disp = pred_disp.squeeze(1) # [B, H, W]
img_summary['disp_error'] = disp_error_img(pred_disp, gt_disp)
save_images(self.train_writer, 'train', img_summary, self.num_iter)
epe = F.l1_loss(gt_disp[mask], pred_disp[mask], reduction='mean')
self.train_writer.add_scalar('train/epe', epe.item(), self.num_iter)
self.train_writer.add_scalar('train/disp_loss', disp_loss.item(), self.num_iter)
self.train_writer.add_scalar('train/total_loss', total_loss.item(), self.num_iter)
# Save loss of different scale
for s in range(len(pyramid_loss)):
save_name = 'train/loss' + str(len(pyramid_loss) - s - 1)
save_value = pyramid_loss[s]
self.train_writer.add_scalar(save_name, save_value, self.num_iter)
d1 = d1_metric(pred_disp, gt_disp, mask)
self.train_writer.add_scalar('train/d1', d1.item(), self.num_iter)
thres1 = thres_metric(pred_disp, gt_disp, mask, 1.0)
thres2 = thres_metric(pred_disp, gt_disp, mask, 2.0)
thres3 = thres_metric(pred_disp, gt_disp, mask, 3.0)
self.train_writer.add_scalar('train/thres1', thres1.item(), self.num_iter)
self.train_writer.add_scalar('train/thres2', thres2.item(), self.num_iter)
self.train_writer.add_scalar('train/thres3', thres3.item(), self.num_iter)
self.epoch += 1
# Always save the latest model for resuming training
if args.no_validate:
utils.save_checkpoint(args.checkpoint_dir, self.optimizer, self.aanet,
epoch=self.epoch, num_iter=self.num_iter,
epe=-1, best_epe=self.best_epe,
best_epoch=self.best_epoch,
filename='aanet_latest.pth')
# Save checkpoint of specific epoch
if self.epoch % args.save_ckpt_freq == 0:
model_dir = os.path.join(args.checkpoint_dir, 'models')
utils.check_path(model_dir)
utils.save_checkpoint(model_dir, self.optimizer, self.aanet,
epoch=self.epoch, num_iter=self.num_iter,
epe=-1, best_epe=self.best_epe,
best_epoch=self.best_epoch,
save_optimizer=False)
def validate(self, val_loader):
args = self.args
logger = self.logger
logger.info('=> Start validation...')
if args.evaluate_only is True:
if args.pretrained_aanet is not None:
pretrained_aanet = args.pretrained_aanet
else:
model_name = 'aanet_best.pth'
pretrained_aanet = os.path.join(args.checkpoint_dir, model_name)
if not os.path.exists(pretrained_aanet): # KITTI without validation
pretrained_aanet = pretrained_aanet.replace(model_name, 'aanet_latest.pth')
logger.info('=> loading pretrained aanet: %s' % pretrained_aanet)
utils.load_pretrained_net(self.aanet, pretrained_aanet, no_strict=True)
self.aanet.eval()
num_samples = len(val_loader)
logger.info('=> %d samples found in the validation set' % num_samples)
val_epe = 0
val_d1 = 0
val_thres1 = 0
val_thres2 = 0
val_thres3 = 0
val_count = 0
val_file = os.path.join(args.checkpoint_dir, 'val_results.txt')
num_imgs = 0
valid_samples = 0
for i, sample in enumerate(val_loader):
if i % 100 == 0:
logger.info('=> Validating %d/%d' % (i, num_samples))
left = sample['left'].to(self.device) # [B, 3, H, W]
right = sample['right'].to(self.device)
gt_disp = sample['disp'].to(self.device) # [B, H, W]
mask = (gt_disp > 0) & (gt_disp < args.max_disp)
if not mask.any():
continue
valid_samples += 1
num_imgs += gt_disp.size(0)
with torch.no_grad():
pred_disp = self.aanet(left, right)[-1] # [B, H, W]
if pred_disp.size(-1) < gt_disp.size(-1):
pred_disp = pred_disp.unsqueeze(1) # [B, 1, H, W]
pred_disp = F.interpolate(pred_disp, (gt_disp.size(-2), gt_disp.size(-1)),
mode='bilinear', align_corners=False) * (gt_disp.size(-1) / pred_disp.size(-1))
pred_disp = pred_disp.squeeze(1) # [B, H, W]
epe = F.l1_loss(gt_disp[mask], pred_disp[mask], reduction='mean')
d1 = d1_metric(pred_disp, gt_disp, mask)
thres1 = thres_metric(pred_disp, gt_disp, mask, 1.0)
thres2 = thres_metric(pred_disp, gt_disp, mask, 2.0)
thres3 = thres_metric(pred_disp, gt_disp, mask, 3.0)
val_epe += epe.item()
val_d1 += d1.item()
val_thres1 += thres1.item()
val_thres2 += thres2.item()
val_thres3 += thres3.item()
# Save 3 images for visualization
if not args.evaluate_only:
if i in [num_samples // 4, num_samples // 2, num_samples // 4 * 3]:
img_summary = dict()
img_summary['disp_error'] = disp_error_img(pred_disp, gt_disp)
img_summary['left'] = left
img_summary['right'] = right
img_summary['gt_disp'] = gt_disp
img_summary['pred_disp'] = pred_disp
save_images(self.train_writer, 'val' + str(val_count), img_summary, self.epoch)
val_count += 1
logger.info('=> Validation done!')
mean_epe = val_epe / valid_samples
mean_d1 = val_d1 / valid_samples
mean_thres1 = val_thres1 / valid_samples
mean_thres2 = val_thres2 / valid_samples
mean_thres3 = val_thres3 / valid_samples
# Save validation results
with open(val_file, 'a') as f:
f.write('epoch: %03d\t' % self.epoch)
f.write('epe: %.3f\t' % mean_epe)
f.write('d1: %.4f\t' % mean_d1)
f.write('thres1: %.4f\t' % mean_thres1)
f.write('thres2: %.4f\t' % mean_thres2)
f.write('thres3: %.4f\n' % mean_thres3)
logger.info('=> Mean validation epe of epoch %d: %.3f' % (self.epoch, mean_epe))
if not args.evaluate_only:
self.train_writer.add_scalar('val/epe', mean_epe, self.epoch)
self.train_writer.add_scalar('val/d1', mean_d1, self.epoch)
self.train_writer.add_scalar('val/thres1', mean_thres1, self.epoch)
self.train_writer.add_scalar('val/thres2', mean_thres2, self.epoch)
self.train_writer.add_scalar('val/thres3', mean_thres3, self.epoch)
if not args.evaluate_only:
if args.val_metric == 'd1':
if mean_d1 < self.best_epe:
# Actually best_epe here is d1
self.best_epe = mean_d1
self.best_epoch = self.epoch
utils.save_checkpoint(args.checkpoint_dir, self.optimizer, self.aanet,
epoch=self.epoch, num_iter=self.num_iter,
epe=mean_d1, best_epe=self.best_epe,
best_epoch=self.best_epoch,
filename='aanet_best.pth')
elif args.val_metric == 'epe':
if mean_epe < self.best_epe:
self.best_epe = mean_epe
self.best_epoch = self.epoch
utils.save_checkpoint(args.checkpoint_dir, self.optimizer, self.aanet,
epoch=self.epoch, num_iter=self.num_iter,
epe=mean_epe, best_epe=self.best_epe,
best_epoch=self.best_epoch,
filename='aanet_best.pth')
else:
raise NotImplementedError
if self.epoch == args.max_epoch:
# Save best validation results
with open(val_file, 'a') as f:
f.write('\nbest epoch: %03d \t best %s: %.3f\n\n' % (self.best_epoch,
args.val_metric,
self.best_epe))
logger.info('=> best epoch: %03d \t best %s: %.3f\n' % (self.best_epoch,
args.val_metric,
self.best_epe))
# Always save the latest model for resuming training
if not args.evaluate_only:
utils.save_checkpoint(args.checkpoint_dir, self.optimizer, self.aanet,
epoch=self.epoch, num_iter=self.num_iter,
epe=mean_epe, best_epe=self.best_epe,
best_epoch=self.best_epoch,
filename='aanet_latest.pth')
# Save checkpoint of specific epochs
if self.epoch % args.save_ckpt_freq == 0:
model_dir = os.path.join(args.checkpoint_dir, 'models')
utils.check_path(model_dir)
utils.save_checkpoint(model_dir, self.optimizer, self.aanet,
epoch=self.epoch, num_iter=self.num_iter,
epe=mean_epe, best_epe=self.best_epe,
best_epoch=self.best_epoch,
save_optimizer=False)