-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcollate_fn.py
45 lines (32 loc) · 1.48 KB
/
collate_fn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import numpy as np
import torch
from torch.utils.data import Dataset, DataLoader
"""
for Video application
"""
class CustomDataset(Dataset):
def __init__(self, len_dataset, width, length, lmin=0, lmax=2):
"""
self.x : Generate according to a Gaussian distribution a list of 3D vector with different depths
self.y : Randomly generate labels between [lmin, lmax]
"""
self.x = [torch.rand((p + 1 * p, width, length)) for p in range(1, len_dataset)]
self.y = [torch.randint(lmin, lmax, (1,1))[0] for i in range(1, len_dataset)]
def __getitem__(self, index):
return self.x[index], self.y[index]
def __len__(self):
return len(self.x)
def collate_fn(data):
"""
This function will adjust the elements of our dataset
which are 3D vectors with different depths by adding at the beginning null vector
"""
# batch contains a list of tuples of structure (sequence, target) of size 'batch size'
maximum = max(list(map(lambda x: x[0].shape[0], data)))
return torch.tensor([torch.cat((torch.zeros((maximum - tmp[0].shape[0], tmp[0].shape[1], tmp[0].shape[2])),
tmp[0])).numpy() for tmp in data]), torch.tensor(list(zip(*data))[1]).unsqueeze(1)
if __name__ == "__main__":
dl = DataLoader(CustomDataset(len_dataset=10), batch_size=4, shuffle=True, collate_fn=collate_fn)
for x, y in dl:
print(x.shape)
print(y.shape)