-
Notifications
You must be signed in to change notification settings - Fork 68
/
adamw.py
53 lines (48 loc) · 2.64 KB
/
adamw.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import math
import torch
from torch.optim.optimizer import Optimizer
class AdamW(Optimizer):
def __init__(self, params, lr=1e-4, betas=(0.9, 0.999), eps=1e-5, weight_decay=1e-5, hypergrad=0, partial=1):
if not 0.0 <= betas[0] < 1.0:
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
if not 0.0 <= betas[1] < 1.0:
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, hypergrad=hypergrad, partial=partial)
super().__init__(params, defaults)
def step(self, closure=None):
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data
if grad.is_sparse:
raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead')
state = self.state[p]
if len(state) == 0:
state['step'] = 0
state['exp_avg'] = torch.zeros_like(p.data)
state['exp_avg_sq'] = torch.zeros_like(p.data)
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
beta1, beta2 = group['betas']
state['step'] += 1
if group['hypergrad'] > 0 and state['step'] > 1:
prev_bias_correction1 = 1 - beta1 ** (state['step'] - 1)
prev_bias_correction2 = 1 - beta2 ** (state['step'] - 1)
h = torch.dot(grad.view(-1), torch.div(exp_avg, exp_avg_sq.sqrt().add_(group['eps'])).view(-1)) * math.sqrt(prev_bias_correction2) / prev_bias_correction1
group['lr'] += group['hypergrad'] * h
exp_avg.mul_(beta1).add_(1 - beta1, grad)
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
denom = exp_avg_sq.sqrt().add_(group['eps'])
bias_correction1 = 1 - beta1 ** state['step']
bias_correction2 = 1 - beta2 ** state['step']
step_size = group['lr'] * math.sqrt(bias_correction2) / bias_correction1
if group['weight_decay'] != 0:
decayed_weights = torch.mul(p.data, group['weight_decay'])
p.data.addcdiv_(-step_size, exp_avg, denom**group['partial'])
p.data.sub_(decayed_weights)
else:
p.data.addcdiv_(-step_size, exp_avg, denom**group['partial'])
return loss