-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsgd.py
133 lines (101 loc) · 3.46 KB
/
sgd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
#!/usr/bin/env python
# Save parameters every a few SGD iterations as fail-safe
SAVE_PARAMS_EVERY = 5000
import pickle
import glob
import random
import numpy as np
import os.path as op
def load_saved_params():
"""
A helper function that loads previously saved parameters and resets
iteration start.
"""
st = 0
for f in glob.glob("saved_params_*.npy"):
iter = int(op.splitext(op.basename(f))[0].split("_")[2])
if (iter > st):
st = iter
if st > 0:
params_file = "saved_params_%d.npy" % st
state_file = "saved_state_%d.pickle" % st
params = np.load(params_file)
with open(state_file, "rb") as f:
state = pickle.load(f)
return st, params, state
else:
return st, None, None
def save_params(iter, params):
params_file = "saved_params_%d.npy" % iter
np.save(params_file, params)
with open("saved_state_%d.pickle" % iter, "wb") as f:
pickle.dump(random.getstate(), f)
def sgd(f, x0, step, iterations, postprocessing=None, useSaved=False,
PRINT_EVERY=10):
""" Stochastic Gradient Descent
Implement the stochastic gradient descent method in this function.
Arguments:
f -- the function to optimize, it should take a single
argument and yield two outputs, a loss and the gradient
with respect to the arguments
x0 -- the initial point to start SGD from
step -- the step size for SGD
iterations -- total iterations to run SGD for
postprocessing -- postprocessing function for the parameters
if necessary. In the case of word2vec we will need to
normalize the word vectors to have unit length.
PRINT_EVERY -- specifies how many iterations to output loss
Return:
x -- the parameter value after SGD finishes
"""
# Anneal learning rate every several iterations
ANNEAL_EVERY = 20000
if useSaved:
start_iter, oldx, state = load_saved_params()
if start_iter > 0:
x0 = oldx
step *= 0.5 ** (start_iter / ANNEAL_EVERY)
if state:
random.setstate(state)
else:
start_iter = 0
x = x0
if not postprocessing:
postprocessing = lambda x: x
exploss = None
for iter in range(start_iter + 1, iterations + 1):
# You might want to print the progress every few iterations.
loss = None
### YOUR CODE HERE
loss, gradient = f(x)
x -= step * gradient
### END YOUR CODE
x = postprocessing(x)
if iter % PRINT_EVERY == 0:
if not exploss:
exploss = loss
else:
exploss = .95 * exploss + .05 * loss
print("iter %d: %f" % (iter, exploss))
if iter % SAVE_PARAMS_EVERY == 0 and useSaved:
save_params(iter, x)
if iter % ANNEAL_EVERY == 0:
step *= 0.5
return x
def sanity_check():
quad = lambda x: (np.sum(x ** 2), x * 2)
print("Running sanity checks...")
t1 = sgd(quad, 0.5, 0.01, 1000, PRINT_EVERY=100)
print("test 1 result:", t1)
assert abs(t1) <= 1e-6
t2 = sgd(quad, 0.0, 0.01, 1000, PRINT_EVERY=100)
print("test 2 result:", t2)
assert abs(t2) <= 1e-6
t3 = sgd(quad, -1.5, 0.01, 1000, PRINT_EVERY=100)
print("test 3 result:", t3)
assert abs(t3) <= 1e-6
print("-" * 40)
print("ALL TESTS PASSED")
print("-" * 40)
if __name__ == "__main__":
sanity_check()