forked from val-iisc/EffSSL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlars.py
110 lines (87 loc) · 3.46 KB
/
lars.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
# Copied from solo-learn
# (https://github.com/vturrisi/solo-learn/blob/main/solo/utils/lars.py)
import torch
from torch.optim import Optimizer
class LARSWrapper:
def __init__(
self,
optimizer: Optimizer,
eta: float = 1e-3,
clip: bool = False,
eps: float = 1e-8,
exclude_bias_n_norm: bool = False,
):
"""Wrapper that adds LARS scheduling to any optimizer.
This helps stability with huge batch sizes.
Args:
optimizer (Optimizer): torch optimizer.
eta (float, optional): trust coefficient. Defaults to 1e-3.
clip (bool, optional): clip gradient values. Defaults to False.
eps (float, optional): adaptive_lr stability coefficient. Defaults to 1e-8.
exclude_bias_n_norm (bool, optional): exclude bias and normalization layers from lars.
Defaults to False.
"""
self.optim = optimizer
self.eta = eta
self.eps = eps
self.clip = clip
self.exclude_bias_n_norm = exclude_bias_n_norm
# transfer optim methods
self.state_dict = self.optim.state_dict
self.load_state_dict = self.optim.load_state_dict
self.zero_grad = self.optim.zero_grad
self.add_param_group = self.optim.add_param_group
self.__setstate__ = self.optim.__setstate__ # type: ignore
self.__getstate__ = self.optim.__getstate__ # type: ignore
self.__repr__ = self.optim.__repr__ # type: ignore
@property
def defaults(self):
return self.optim.defaults
@defaults.setter
def defaults(self, defaults):
self.optim.defaults = defaults
@property # type: ignore
def __class__(self):
return Optimizer
@property
def state(self):
return self.optim.state
@state.setter
def state(self, state):
self.optim.state = state
@property
def param_groups(self):
return self.optim.param_groups
@param_groups.setter
def param_groups(self, value):
self.optim.param_groups = value
@torch.no_grad()
def step(self, closure=None):
weight_decays = []
for group in self.optim.param_groups:
weight_decay = group.get("weight_decay", 0)
weight_decays.append(weight_decay)
# reset weight decay
group["weight_decay"] = 0
# update the parameters
for p in group["params"]:
if p.grad is not None and (p.ndim != 1 or not self.exclude_bias_n_norm):
self.update_p(p, group, weight_decay)
# update the optimizer
self.optim.step(closure=closure)
# return weight decay control to optimizer
for group_idx, group in enumerate(self.optim.param_groups):
group["weight_decay"] = weight_decays[group_idx]
def update_p(self, p, group, weight_decay):
# calculate new norms
p_norm = torch.norm(p.data)
g_norm = torch.norm(p.grad.data)
if p_norm != 0 and g_norm != 0:
# calculate new lr
new_lr = (self.eta * p_norm) / (g_norm + p_norm * weight_decay + self.eps)
# clip lr
if self.clip:
new_lr = min(new_lr / group["lr"], 1)
# update params with clipped lr
p.grad.data += weight_decay * p.data
p.grad.data *= new_lr