forked from pyscript/pyscript
-
Notifications
You must be signed in to change notification settings - Fork 0
/
panel_kmeans.html
180 lines (154 loc) · 6.63 KB
/
panel_kmeans.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<link rel="icon" type="image/x-icon" href="./favicon.png">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="default">
<meta name="theme-color" content="#000000">
<meta name="name" content="PyScript/Panel KMeans Demo">
<title>Pyscript/Panel KMeans Demo</title>
<link rel="icon" type="image/x-icon" href="./favicon.png">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.15.3/css/all.min.css" type="text/css" />
<link rel="stylesheet" href="https://unpkg.com/@holoviz/[email protected]/dist/css/widgets.css" type="text/css" />
<link rel="stylesheet" href="https://unpkg.com/@holoviz/[email protected]/dist/css/markdown.css" type="text/css" />
<script type="text/javascript" src="https://cdn.jsdelivr.net/npm/vega@5"></script>
<script type="text/javascript" src="https://cdn.jsdelivr.net/npm/vega-lite@5"></script>
<script type="text/javascript" src="https://cdn.jsdelivr.net/npm/vega-embed@6"></script>
<script type="text/javascript" src="https://unpkg.com/[email protected]/dist/js/tabulator.js"></script>
<script type="text/javascript" src="https://cdn.bokeh.org/bokeh/release/bokeh-2.4.2.js"></script>
<script type="text/javascript" src="https://cdn.bokeh.org/bokeh/release/bokeh-widgets-2.4.2.min.js"></script>
<script type="text/javascript" src="https://cdn.bokeh.org/bokeh/release/bokeh-tables-2.4.2.min.js"></script>
<script type="text/javascript" src="https://unpkg.com/@holoviz/[email protected]/dist/panel.min.js"></script>
<script type="text/javascript">
Bokeh.set_log_level("info");
</script>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/css/bootstrap.min.css">
<link rel="stylesheet" href="https://unpkg.com/@holoviz/[email protected]/dist/bundled/bootstraptemplate/bootstrap.css">
<link rel="stylesheet" href="https://unpkg.com/@holoviz/[email protected]/dist/bundled/defaulttheme/default.css">
<style>
#sidebar {
width: 350px;
}
</style>
<script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/jquery.slim.min.js"></script>
<script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/js/bootstrap.bundle.min.js"></script>
<link rel="stylesheet" href="../build/pyscript.css" />
<script defer src="../build/pyscript.js"></script>
</head>
<py-env>
- altair
- numpy
- pandas
- scikit-learn
- panel==0.13.1a2
</py-env>
<body>
<div class="container-fluid d-flex flex-column vh-100 overflow-hidden" id="container">
<nav class="navbar navbar-expand-md navbar-dark sticky-top shadow" id="header" style="background-color: #000000;">
<button type="button" class="navbar-toggle collapsed" id="sidebarCollapse">
<span class="navbar-toggler-icon"></span>
</button>
<div class="app-header">
<a class="navbar-brand app-logo" href="/">
<img src="./logo.png" class="app-logo">
</a>
<a class="title" href="" style="color: #f0ab3c;">Panel KMeans Clustering Demo</a>
</div>
</nav>
<div class="row overflow-hidden" id="content">
<div class="sidenav" id="sidebar">
<ul class="nav flex-column">
<div class="bk-root" id="x-widget"></div>
<div class="bk-root" id="y-widget"></div>
<div class="bk-root" id="n-widget"></div>
</ul>
</div>
<div class="col mh-100 float-left" id="main">
<div class="bk-root" id="intro"></div>
<div class="bk-root" id="cluster-plot"></div>
<div class="bk-root" id="table"></div>
</div>
</div>
</div>
<py-script>
import asyncio
import altair as alt
import panel as pn
import pandas as pd
from panel.io.pyodide import show
from sklearn.cluster import KMeans
from pyodide.http import open_url
pn.config.sizing_mode = 'stretch_width'
url = 'https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-07-28/penguins.csv'
penguins = pd.read_csv(open_url(url)).dropna()
cols = list(penguins.columns)[2:6]
x = pn.widgets.Select(name='x', options=cols, value='bill_depth_mm')
y = pn.widgets.Select(name='y', options=cols, value='bill_length_mm')
n_clusters = pn.widgets.IntSlider(name='n_clusters', start=1, end=5, value=3)
brush = alt.selection_interval(name='brush') # selection of type "interval"
def get_clusters(n_clusters):
kmeans = KMeans(n_clusters=n_clusters)
est = kmeans.fit(penguins[cols].values)
df = penguins.copy()
df['labels'] = est.labels_.astype('str')
return df
def get_chart(x, y, df):
centers = df.groupby('labels').mean()
return (alt.Chart(df)
.mark_point(size=100)
.encode(
x=alt.X(x, scale=alt.Scale(zero=False)),
y=alt.Y(y, scale=alt.Scale(zero=False)),
shape='labels',
color='species'
).add_selection(brush).properties(width=800) +
alt.Chart(centers)
.mark_point(size=250, shape='cross', color='black')
.encode(x=x+':Q', y=y+':Q')
)
chart = pn.pane.Vega()
table = pn.widgets.Tabulator(pagination='remote', page_size=10)
def update_table(event=None):
table.value = get_clusters(n_clusters.value)
n_clusters.param.watch(update_table, 'value')
@pn.depends(x, y, n_clusters, watch=True)
def update_chart(*events):
chart.object = get_chart(x.value, y.value, table.value)
chart.selection.param.watch(update_filters, 'brush')
def update_filters(event=None):
filters = []
for k, v in (getattr(event, 'new') or {}).items():
filters.append(dict(field=k, type='>=', value=v[0]))
filters.append(dict(field=k, type='<=', value=v[1]))
table.filters = filters
update_table()
update_chart()
intro = """
This app provides an example of **building a simple dashboard using
Panel**.\n\nIt demonstrates how to take the output of **k-means
clustering on the Penguins dataset** using scikit-learn,
parameterizing the number of clusters and the variables to
plot.\n\nThe plot and the table are linked, i.e. selecting on the plot
will filter the data in the table.\n\n The **`x` marks the center** of
the cluster.
"""
await show(x, 'x-widget')
await show(y, 'y-widget')
await show(n_clusters, 'n-widget')
await show(intro, 'intro')
await show(chart, 'cluster-plot')
await show(table, 'table')
</py-script>
<script>
$(document).ready(function () {
$('#sidebarCollapse').on('click', function () {
$('#sidebar').toggleClass('active')
$(this).toggleClass('active')
var interval = setInterval(function () { window.dispatchEvent(new Event('resize')); }, 10);
setTimeout(function () { clearInterval(interval) }, 210)
});
});
</script>
</body>
</html>