-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclip.py
62 lines (40 loc) · 2.94 KB
/
clip.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import gradio as gr
from transformers import AutoProcessor, AutoTokenizer, AutoImageProcessor, AutoModelForCausalLM, BlipForConditionalGeneration, Blip2ForConditionalGeneration, VisionEncoderDecoderModel, InstructBlipForConditionalGeneration
import torch
from PIL import Image
from huggingface_hub import hf_hub_download
device = "cuda" if torch.cuda.is_available() else "cpu"
git_processor_large_coco = AutoProcessor.from_pretrained("microsoft/git-large-coco")
git_model_large_coco = AutoModelForCausalLM.from_pretrained("microsoft/git-large-coco").to(device)
# blip_processor_large = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
# blip_model_large = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large").to(device)
# blip2_processor = AutoProcessor.from_pretrained("Salesforce/blip2-opt-6.7b-coco")
# blip2_model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-6.7b-coco", device_map="auto", load_in_4bit=True, torch_dtype=torch.float16)
# instructblip_processor = AutoProcessor.from_pretrained("Salesforce/instructblip-vicuna-7b")
# instructblip_model = InstructBlipForConditionalGeneration.from_pretrained("Salesforce/instructblip-vicuna-7b", device_map="auto", load_in_4bit=True, torch_dtype=torch.float16)
def generate_caption(processor, model, image, tokenizer=None, use_float_16=False):
inputs = processor(images=image, return_tensors="pt").to(device)
if use_float_16:
inputs = inputs.to(torch.float16)
generated_ids = model.generate(pixel_values=inputs.pixel_values, num_beams=3, max_length=20, min_length=5)
if tokenizer is not None:
generated_caption = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
else:
generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
return generated_caption
def generate_caption_blip2(processor, model, image, replace_token=False):
prompt = "A photo of"
inputs = processor(images=image, text=prompt, return_tensors="pt").to(device=model.device, dtype=torch.float16)
generated_ids = model.generate(**inputs,
num_beams=5, max_length=50, min_length=1, top_p=0.9,
repetition_penalty=1.5, length_penalty=1.0, temperature=1)
if replace_token:
generated_ids[generated_ids == 0] = 2
return processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
def generate_captions(image):
image = Image.open(image)
caption_git_large_coco = generate_caption(git_processor_large_coco, git_model_large_coco, image)
# caption_blip_large = generate_caption(blip_processor_large, blip_model_large, image)
# caption_blip2 = generate_caption_blip2(blip2_processor, blip2_model, image).strip()
# caption_instructblip = generate_caption_blip2(instructblip_processor, instructblip_model, image, replace_token=True)
return caption_git_large_coco