forked from ultralytics/yolov3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.py
214 lines (178 loc) · 8.8 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import argparse
import json
import time
from pathlib import Path
from models import *
from utils.datasets import *
from utils.utils import *
def test(
cfg,
data_cfg,
weights,
batch_size=16,
img_size=416,
iou_thres=0.5,
conf_thres=0.3,
nms_thres=0.45,
save_json=False
):
device = torch_utils.select_device()
# Configure run
data_cfg_dict = parse_data_cfg(data_cfg)
nC = int(data_cfg_dict['classes']) # number of classes (80 for COCO)
test_path = data_cfg_dict['valid']
# Initialize model
model = Darknet(cfg, img_size)
# Load weights
if weights.endswith('.pt'): # pytorch format
model.load_state_dict(torch.load(weights, map_location='cpu')['model'])
else: # darknet format
load_darknet_weights(model, weights)
model.to(device).eval()
# Get dataloader
# dataloader = torch.utils.data.DataLoader(LoadImagesAndLabels(test_path), batch_size=batch_size)
dataloader = LoadImagesAndLabels(test_path, batch_size=batch_size, img_size=img_size)
mean_mAP, mean_R, mean_P, seen = 0.0, 0.0, 0.0, 0
print('%11s' * 5 % ('Image', 'Total', 'P', 'R', 'mAP'))
outputs, mAPs, mR, mP, TP, confidence, pred_class, target_class, jdict = \
[], [], [], [], [], [], [], [], []
AP_accum, AP_accum_count = np.zeros(nC), np.zeros(nC)
coco91class = coco80_to_coco91_class()
for batch_i, (imgs, targets, paths, shapes) in enumerate(dataloader):
t = time.time()
output = model(imgs.to(device))
output = non_max_suppression(output, conf_thres=conf_thres, nms_thres=nms_thres)
# Compute average precision for each sample
for si, (labels, detections) in enumerate(zip(targets, output)):
seen += 1
if detections is None:
# If there are labels but no detections mark as zero AP
if labels.size(0) != 0:
mAPs.append(0), mR.append(0), mP.append(0)
continue
# Get detections sorted by decreasing confidence scores
detections = detections.cpu().numpy()
detections = detections[np.argsort(-detections[:, 4])]
if save_json:
# [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ...
box = torch.from_numpy(detections[:, :4]).clone() # xyxy
scale_coords(img_size, box, shapes[si]) # to original shape
box = xyxy2xywh(box) # xywh
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
# add to json dictionary
for di, d in enumerate(detections):
jdict.append({
'image_id': int(Path(paths[si]).stem.split('_')[-1]),
'category_id': coco91class[int(d[6])],
'bbox': [float3(x) for x in box[di]],
'score': float3(d[4] * d[5])
})
# If no labels add number of detections as incorrect
correct = []
if labels.size(0) == 0:
# correct.extend([0 for _ in range(len(detections))])
mAPs.append(0), mR.append(0), mP.append(0)
continue
else:
target_cls = labels[:, 0]
# Extract target boxes as (x1, y1, x2, y2)
target_boxes = xywh2xyxy(labels[:, 1:5]) * img_size
detected = []
for *pred_bbox, conf, obj_conf, obj_pred in detections:
pred_bbox = torch.FloatTensor(pred_bbox).view(1, -1)
# Compute iou with target boxes
iou = bbox_iou(pred_bbox, target_boxes)
# Extract index of largest overlap
best_i = np.argmax(iou)
# If overlap exceeds threshold and classification is correct mark as correct
if iou[best_i] > iou_thres and obj_pred == labels[best_i, 0] and best_i not in detected:
correct.append(1)
detected.append(best_i)
else:
correct.append(0)
# Compute Average Precision (AP) per class
AP, AP_class, R, P = ap_per_class(tp=correct,
conf=detections[:, 4],
pred_cls=detections[:, 6],
target_cls=target_cls)
# Accumulate AP per class
AP_accum_count += np.bincount(AP_class, minlength=nC)
AP_accum += np.bincount(AP_class, minlength=nC, weights=AP)
# Compute mean AP across all classes in this image, and append to image list
mAPs.append(AP.mean())
mR.append(R.mean())
mP.append(P.mean())
# Means of all images
mean_mAP = np.mean(mAPs)
mean_R = np.mean(mR)
mean_P = np.mean(mP)
# Print image mAP and running mean mAP
print(('%11s%11s' + '%11.3g' * 4 + 's') %
(seen, dataloader.nF, mean_P, mean_R, mean_mAP, time.time() - t))
# Print mAP per class
print('%11s' * 5 % ('Image', 'Total', 'P', 'R', 'mAP') + '\n\nmAP Per Class:')
for i, c in enumerate(load_classes(data_cfg_dict['names'])):
print('%15s: %-.4f' % (c, AP_accum[i] / (AP_accum_count[i] + 1E-16)))
# Save JSON
if save_json:
imgIds = [int(Path(x).stem.split('_')[-1]) for x in dataloader.img_files]
with open('results.json', 'w') as file:
json.dump(jdict, file)
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
# https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
cocoGt = COCO('../coco/annotations/instances_val2014.json') # initialize COCO ground truth api
cocoDt = cocoGt.loadRes('results.json') # initialize COCO detections api
cocoEval = COCOeval(cocoGt, cocoDt, 'bbox')
cocoEval.params.imgIds = imgIds # [:32] # only evaluate these images
cocoEval.evaluate()
cocoEval.accumulate()
cocoEval.summarize()
# Return mAP
return mean_mAP, mean_R, mean_P
if __name__ == '__main__':
parser = argparse.ArgumentParser(prog='test.py')
parser.add_argument('--batch-size', type=int, default=32, help='size of each image batch')
parser.add_argument('--cfg', type=str, default='cfg/yolov3.cfg', help='cfg file path')
parser.add_argument('--data-cfg', type=str, default='cfg/coco.data', help='coco.data file path')
parser.add_argument('--weights', type=str, default='weights/yolov3.weights', help='path to weights file')
parser.add_argument('--iou-thres', type=float, default=0.5, help='iou threshold required to qualify as detected')
parser.add_argument('--conf-thres', type=float, default=0.3, help='object confidence threshold')
parser.add_argument('--nms-thres', type=float, default=0.45, help='iou threshold for non-maximum suppression')
parser.add_argument('--save-json', action='store_true', help='save a cocoapi-compatible JSON results file')
parser.add_argument('--img-size', type=int, default=416, help='size of each image dimension')
opt = parser.parse_args()
print(opt, end='\n\n')
with torch.no_grad():
mAP = test(
opt.cfg,
opt.data_cfg,
opt.weights,
opt.batch_size,
opt.img_size,
opt.iou_thres,
opt.conf_thres,
opt.nms_thres,
opt.save_json
)
# Image Total P R mAP # YOLOv3 320
# 32 5000 0.66 0.597 0.591
# 64 5000 0.664 0.62 0.604
# 96 5000 0.653 0.627 0.614
# 128 5000 0.639 0.623 0.607
# 160 5000 0.642 0.63 0.616
# 192 5000 0.651 0.636 0.621
# Image Total P R mAP # YOLOv3 416
# 32 5000 0.635 0.581 0.57
# 64 5000 0.63 0.591 0.578
# 96 5000 0.661 0.632 0.622
# 128 5000 0.659 0.632 0.623
# 160 5000 0.665 0.64 0.633
# 192 5000 0.66 0.637 0.63
# Image Total P R mAP # YOLOv3 608
# 32 5000 0.653 0.606 0.591
# 64 5000 0.653 0.635 0.625
# 96 5000 0.655 0.642 0.633
# 128 5000 0.667 0.651 0.642
# 160 5000 0.663 0.645 0.637
# 192 5000 0.663 0.643 0.634