-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
112 lines (88 loc) · 3.64 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import cv2
import numpy as np
import typer
import os
def _resize_frame(frame: np.ndarray, factor: int) -> np.ndarray:
return cv2.resize(frame, (frame.shape[1] // factor, frame.shape[0] // factor))
def _get_dom_color_from_frame(frame: np.ndarray):
# Flatten frame to 1D array
pixels = frame.reshape(-1, 3)
k = 1 # number of clusters
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0)
_, _, centers = cv2.kmeans(
np.float32(pixels), k, None, criteria, 10, cv2.KMEANS_RANDOM_CENTERS
)
# Convert center color from float to integer
return np.round(centers[0]).astype(int)
def _display_dom_color_and_frame(frame: np.ndarray, dominant_color: np.ndarray):
dominant_color_display = np.zeros((100, 100, 3), dtype=np.uint8)
dominant_color_display[:, :] = dominant_color
cv2.imshow("Dominant Color", dominant_color_display)
cv2.imshow("Frame", frame)
def _create_output_frame(
dom_colors: list[np.ndarray], output_height: int, output_length: int
) -> np.ndarray:
out_array = np.zeros((output_height, len(dom_colors), 3), dtype=np.uint8)
for i, col in enumerate(dom_colors):
out_array[:, i, :] = col
return cv2.resize(out_array, (output_length, output_height))
def create_palette(
input_file_name: str = typer.Argument(
..., help="Path to input file. Example: input.mp4"
),
output_file_name: str = typer.Argument(
...,
help="Path to output file. Will raise error if file already exists unless"
" output_file_overwrite is set. Example: output.png",
),
output_file_overwrite: bool = typer.Option(
False, help="If this is set, will overwrite output file if it exists."
),
input_resize_factor: int = typer.Option(
1, help="Factor by which to scale down image. Cannot be less than 1."
),
output_height: int = typer.Option(540, help="Height of output palette in pixels."),
output_length: int = typer.Option(1920, help="Length of output palette in pixels."),
debug_show_dom_color_and_frame: bool = typer.Option(
False,
help="Show dominant color for each frame. Press q to quit, n to move forward.",
),
):
# Load video file
if not os.path.exists(input_file_name):
raise FileNotFoundError("Given input file does not exist.")
cap = cv2.VideoCapture(input_file_name)
dom_colors = []
# Loop through frames
while True:
# Read frame
ret, frame = cap.read()
if not ret:
break
# Resize frame for faster processing (optional)
if input_resize_factor >= 1:
frame = _resize_frame(frame=frame, factor=input_resize_factor)
# Get dominant color
dominant_color = _get_dom_color_from_frame(frame=frame)
dom_colors.append(dominant_color)
# Display dominant color
if debug_show_dom_color_and_frame:
_display_dom_color_and_frame(frame=frame, dominant_color=dominant_color)
key = cv2.waitKey(1) & 0xFF
if key == ord("q"): # Quit
break
elif key == ord("n"): # Next frame
continue
output_frame = _create_output_frame(
dom_colors=dom_colors, output_height=output_height, output_length=output_length
)
if os.path.exists(output_file_name) and not output_file_overwrite:
raise FileExistsError(
"Given output file already exists. To overwrite, use output_file_overwrite."
)
cv2.imwrite(output_file_name, output_frame)
cap.release()
if debug_show_dom_color_and_frame:
cv2.destroyAllWindows()
if __name__ == "__main__":
typer.run(create_palette)