-
Notifications
You must be signed in to change notification settings - Fork 0
/
connect4.py
312 lines (251 loc) · 8.17 KB
/
connect4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
import numpy as np
# from numpy.core.fromnumeric import size
import random
import pygame
import sys
import math
# colors
RED = (255,0,0)
BLUE = (0,0,255)
GREEN=(0,255,0)
YELLOW = (255,255,0)
BLACK = (0,0,0)
# rows and columns
ROW_COUNT = 6
COLUMN_COUNT = 7
# players
PLAYER = 0
AI = 1
# value at specific pint in matrix
EMPTY = 0
PLAYER_PIECE = 1
AI_PIECE = 2
# connect 4
WINDOW_LENGTH = 4
# function to create a board
def create_board():
board = np.zeros((ROW_COUNT,COLUMN_COUNT))
return board
# function to drop piece
def drop_piece(board, row, col, piece):
board[row][col] = piece
# function to check if location is valid
def is_valid_location(board, col):
return board[ROW_COUNT-1][col] == 0
# function to get next open row
def get_next_open_row(board, col):
for row in range(ROW_COUNT):
if board[row][col] == 0:
return row
# function to print board
def print_board(board):
print(np.flip(board, 0))
# winning move
def winning_move(board, piece):
# Check horizontal locations
for col in range(COLUMN_COUNT-3):
for row in range(ROW_COUNT):
if board[row][col] == piece and board[row][col+1] == piece and board[row][col+2] == piece and board[row][col+3] == piece:
return True
# Check vertical locations
for col in range(COLUMN_COUNT):
for row in range(ROW_COUNT-3):
if board[row][col] == piece and board[row+1][col] == piece and board[row+2][col] == piece and board[row+3][col] == piece:
return True
# Check positive diaganols
for col in range(COLUMN_COUNT-3):
for row in range(ROW_COUNT-3):
if board[row][col] == piece and board[row+1][col+1] == piece and board[row+2][col+2] == piece and board[row+3][col+3] == piece:
return True
# Check negative diaganols
for col in range(COLUMN_COUNT-3):
for row in range(3, ROW_COUNT):
if board[row][col] == piece and board[row-1][col+1] == piece and board[row-2][col+2] == piece and board[row-3][col+3] == piece:
return True
# function to find score for given window
def evaluate_window(window, piece):
score = 0
opp_piece = PLAYER_PIECE
if piece == PLAYER_PIECE:
opp_piece = AI_PIECE
if window.count(piece) == 4:
score += 100
elif window.count(piece) == 3 and window.count(EMPTY) == 1:
score += 5
elif window.count(piece) == 2 and window.count(EMPTY) == 2:
score += 2
if window.count(opp_piece) == 3 and window.count(EMPTY) == 1:
score -= 4
return score
# Scoring positions
def score_position(board, piece):
score = 0
# score center column
center_array = [int(i) for i in list(board[:, COLUMN_COUNT//2])]
center_count = center_array.count(piece)
score += center_count * 3
# score horizontal
for row in range(ROW_COUNT):
row_array = [int(i) for i in list(board[row,:])]
for col in range(COLUMN_COUNT-3):
window = row_array[col:col+WINDOW_LENGTH]
score += evaluate_window(window, piece)
# score vertical
for col in range(COLUMN_COUNT):
col_array = [int(i) for i in list(board[:,col])]
for row in range(ROW_COUNT-3):
window = col_array[row:row+WINDOW_LENGTH]
score += evaluate_window(window, piece)
## score positive diagonal
for row in range(ROW_COUNT-3):
for col in range(COLUMN_COUNT-3):
window = [board[row+i][col+i] for i in range(WINDOW_LENGTH)]
score += evaluate_window(window, piece)
# score negative diagonal
for row in range(ROW_COUNT-3):
for col in range(COLUMN_COUNT-3):
window = [board[row+3-i][col+i] for i in range(WINDOW_LENGTH)]
score += evaluate_window(window, piece)
return score
# check if it is terminal node
def is_terminal_node(board):
return winning_move(board, PLAYER_PIECE) or winning_move(board, AI_PIECE) or len(get_valid_locations(board)) == 0
# minimax algo
def minimax(board, depth, alpha, beta, maximizingPlayer):
valid_locations = get_valid_locations(board)
is_terminal = is_terminal_node(board)
if depth == 0 or is_terminal:
if is_terminal:
if winning_move(board, AI_PIECE):
return (None, 100000000000000)
elif winning_move(board, PLAYER_PIECE):
return (None, -10000000000000)
else: # Game is over, no more valid moves
return (None, 0)
else: # Depth is zero
return (None, score_position(board, AI_PIECE))
if maximizingPlayer:
value = -math.inf
column = random.choice(valid_locations)
for col in valid_locations:
row = get_next_open_row(board, col)
b_copy = board.copy()
drop_piece(b_copy, row, col, AI_PIECE)
new_score = minimax(b_copy, depth-1, alpha, beta, False)[1]
if new_score > value:
value = new_score
column = col
alpha = max(alpha, value)
if alpha >= beta:
break
return column, value
else: # Minimizing player
value = math.inf
column = random.choice(valid_locations)
for col in valid_locations:
row = get_next_open_row(board, col)
b_copy = board.copy()
drop_piece(b_copy, row, col, PLAYER_PIECE)
new_score = minimax(b_copy, depth-1, alpha, beta, True)[1]
if new_score < value:
value = new_score
column = col
beta = min(beta, value)
if alpha >= beta:
break
return column, value
# function to get list of valid locations
def get_valid_locations(board):
valid_locations = []
for col in range(COLUMN_COUNT):
if is_valid_location(board, col):
valid_locations.append(col)
return valid_locations
# function to pick best move
def pick_best_move(board, piece):
valid_locations = get_valid_locations(board)
best_score = -10000
best_col = random.choice(valid_locations)
for col in valid_locations:
row = get_next_open_row(board, col)
temp_board = board.copy()
drop_piece(temp_board, row, col, piece)
score = score_position(temp_board, piece)
if score > best_score:
best_score = score
best_col = col
return best_col
# function to draw board
def draw_board(board):
for col in range(COLUMN_COUNT):
for row in range(ROW_COUNT):
pygame.draw.rect(screen, BLUE, (col*SQUARESIZE, row*SQUARESIZE+SQUARESIZE, SQUARESIZE, SQUARESIZE))
pygame.draw.circle(screen, BLACK, (int(col*SQUARESIZE+SQUARESIZE/2), int(row*SQUARESIZE+SQUARESIZE+SQUARESIZE/2)), RADIUS)
for col in range(COLUMN_COUNT):
for row in range(ROW_COUNT):
if board[row][col] == PLAYER_PIECE:
pygame.draw.circle(screen, RED, (int(col*SQUARESIZE+SQUARESIZE/2), height-int(row*SQUARESIZE+SQUARESIZE/2)), RADIUS)
elif board[row][col] == AI_PIECE:
pygame.draw.circle(screen, YELLOW, (int(col*SQUARESIZE+SQUARESIZE/2), height-int(row*SQUARESIZE+SQUARESIZE/2)), RADIUS)
pygame.display.update()
board = create_board()
print_board(board)
game_over = False
pygame.init()
SQUARESIZE = 100
width = COLUMN_COUNT * SQUARESIZE
height = (ROW_COUNT+1) * SQUARESIZE
size = (width, height)
RADIUS = int(SQUARESIZE/2 - 5)
screen = pygame.display.set_mode(size)
draw_board(board)
pygame.display.update()
myfont = pygame.font.SysFont("monospace", 75)
turn = random.randint(PLAYER, AI)
while not game_over:
for event in pygame.event.get():
if event.type == pygame.QUIT:
sys.exit()
if event.type == pygame.MOUSEMOTION:
pygame.draw.rect(screen, BLACK, (0,0, width, SQUARESIZE))
posx = event.pos[0]
if turn == PLAYER:
pygame.draw.circle(screen, RED, (posx, int(SQUARESIZE/2)), RADIUS)
pygame.display.update()
if event.type == pygame.MOUSEBUTTONDOWN:
pygame.draw.rect(screen, BLACK, (0,0, width, SQUARESIZE))
# print(event.pos)
# player
if turn == PLAYER:
posx = event.pos[0]
col = int(math.floor(posx/SQUARESIZE))
if is_valid_location(board, col):
row = get_next_open_row(board, col)
drop_piece(board, row, col, PLAYER_PIECE)
if winning_move(board, PLAYER_PIECE):
label = myfont.render("Player 1 WON!", 1, RED)
screen.blit(label, (40,10))
game_over = True
turn += 1
turn = turn % 2
print_board(board)
draw_board(board)
# AI
if turn == AI and not game_over:
#col = random.randint(0, COLUMN_COUNT-1)
#col = pick_best_move(board, AI_PIECE)
col, minimax_score = minimax(board, 5, -math.inf, math.inf, True)
if is_valid_location(board, col):
#pygame.time.wait(500)
row = get_next_open_row(board, col)
drop_piece(board, row, col, AI_PIECE)
if winning_move(board, AI_PIECE):
label = myfont.render("AI WON!!", 1, YELLOW)
screen.blit(label, (40,10))
game_over = True
print_board(board)
draw_board(board)
turn += 1
turn = turn % 2
if game_over:
pygame.time.wait(3000)