-
Notifications
You must be signed in to change notification settings - Fork 669
/
Copy pathSpinedBuffer.java
1258 lines (1061 loc) · 47.9 KB
/
SpinedBuffer.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Copyright (c) 2012, 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package java.util.stream;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Iterator;
import java.util.List;
import java.util.Objects;
import java.util.PrimitiveIterator;
import java.util.Spliterator;
import java.util.Spliterators;
import java.util.function.Consumer;
import java.util.function.DoubleConsumer;
import java.util.function.IntConsumer;
import java.util.function.IntFunction;
import java.util.function.LongConsumer;
/**
* An ordered collection of elements. Elements can be added, but not removed.
* Goes through a building phase, during which elements can be added, and a
* traversal phase, during which elements can be traversed in order but no
* further modifications are possible.
*
* <p> One or more arrays are used to store elements. The use of a multiple
* arrays has better performance characteristics than a single array used by
* {@link ArrayList}, as when the capacity of the list needs to be increased
* no copying of elements is required. This is usually beneficial in the case
* where the results will be traversed a small number of times.
*
* @param <E> the type of elements in this list
* @since 1.8
*/
/*
* 弹性缓冲区(引用类型版本)
*
* 该容器仅支持只能存取元素,不能修改元素,通常用在流式操作的终端阶段来收集元素。
*/
class SpinedBuffer<E> extends AbstractSpinedBuffer implements Consumer<E>, Iterable<E> {
/*
* We optimistically hope that all the data will fit into the first chunk,
* so we try to avoid inflating the spine[] and priorElementCount[] arrays
* prematurely. So methods must be prepared to deal with these arrays being
* null. If spine is non-null, then spineIndex points to the current chunk
* within the spine, otherwise it is zero. The spine and priorElementCount
* arrays are always the same size, and for any i <= spineIndex,
* priorElementCount[i] is the sum of the sizes of all the prior chunks.
*
* The curChunk pointer is always valid. The elementIndex is the index of
* the next element to be written in curChunk; this may be past the end of
* curChunk so we have to check before writing. When we inflate the spine
* array, curChunk becomes the first element in it. When we clear the
* buffer, we discard all chunks except the first one, which we clear,
* restoring it to the initial single-chunk state.
*/
// 弹性缓冲区的流迭代器参数
private static final int SPLITERATOR_CHARACTERISTICS = Spliterator.SIZED | Spliterator.ORDERED | Spliterator.SUBSIZED;
/**
* Chunk that we're currently writing into; may or may not be aliased with
* the first element of the spine.
*/
/*
* 当前一维缓存
*
* 每个一维缓存满了之后,需要将该一维缓存添加到二维缓存中,并让curChunk指向新构造的一维缓冲区。
*
* 初始时为curChunk分配容量,之后将为spine分配容量,并让curChunk指向spine新分配的行
*/
protected E[] curChunk;
/**
* All chunks, or null if there is only one chunk.
*/
/*
* 二维缓存
*
* 初始时不分配容量,只是让spine[0]指向curChunk,之后为spine的每一行分配容量
* spine中的每一行称作一个chunk
*/
protected E[][] spine;
/**
* Constructs an empty list with an initial capacity of sixteen.
*/
@SuppressWarnings("unchecked")
SpinedBuffer() {
super();
curChunk = (E[]) new Object[1 << initialChunkPower];
}
/**
* Constructs an empty list with the specified initial capacity.
*
* @param initialCapacity the initial capacity of the list
* @throws IllegalArgumentException if the specified initial capacity
* is negative
*/
@SuppressWarnings("unchecked")
SpinedBuffer(int initialCapacity) {
super(initialCapacity);
curChunk = (E[]) new Object[1 << initialChunkPower];
}
// 向弹性缓冲区存入一个元素
@Override
public void accept(E e) {
// 如果当前一维缓存(chunk)已满,则需要新建
if(elementIndex == curChunk.length) {
// 确保二维缓存已经初始化
inflateSpine();
/*
* 如果二维缓存也满了,则需要对二维缓存扩容;
* 如果二维缓存没满,但是没有可用的空闲行缓存,则需要新建一行作为一维缓存。
*/
if(spineIndex >= spine.length - 1 || spine[spineIndex + 1] == null) {
// 新建一维缓存,这个过程可能伴随着二维缓存的扩容
increaseCapacity();
}
// 重置一维缓存的元素索引
elementIndex = 0;
// 二维缓存的行索引递增
++spineIndex;
// 指向新构造的一维缓冲区
curChunk = spine[spineIndex];
}
// 存入元素
curChunk[elementIndex++] = e;
}
/**
* Retrieve the element at the specified index.
*/
// 返回索引index处的元素
public E get(long index) {
/*
* Casts to int are safe since the spine array index is the index minus the prior element count from the current spine
*/
// 如果还未启用二维数组,则直接从一维数组中获取元素
if (spineIndex == 0) {
// 确保给定的索引没有超过当前chunk的索引上限
if(index<elementIndex) {
return curChunk[((int) index)];
}
throw new IndexOutOfBoundsException(Long.toString(index));
}
if(index >= count()) {
throw new IndexOutOfBoundsException(Long.toString(index));
}
// 遍历二维数组,查找index索引处的元素
for(int j = 0; j<=spineIndex; j++) {
if(index<priorElementCount[j] + spine[j].length) {
return spine[j][((int) (index - priorElementCount[j]))];
}
}
throw new IndexOutOfBoundsException(Long.toString(index));
}
/**
* Create a new array using the specified array factory, and copy the elements into it.
*/
// 将弹性缓冲区中的元素复制到使用arrayFactory构造的数组中后返回
public E[] asArray(IntFunction<E[]> arrayFactory) {
long size = count();
if(size >= Nodes.MAX_ARRAY_SIZE) {
throw new IllegalArgumentException(Nodes.BAD_SIZE);
}
// 构造数组
E[] result = arrayFactory.apply((int) size);
// 复制元素
copyInto(result, 0);
return result;
}
/**
* Copy the elements, starting at the specified offset, into the specified array.
*/
// 将弹性缓冲区中的元素复制到数组array的offset索引中
public void copyInto(E[] array, int offset) {
long finalOffset = offset + count();
if(finalOffset>array.length || finalOffset<offset) {
throw new IndexOutOfBoundsException("does not fit");
}
// 如果二维数组还未启用,则只需要复制一维数组中的数据
if(spineIndex == 0) {
System.arraycopy(curChunk, 0, array, offset, elementIndex);
// 全部复制
} else {
for(int i = 0; i<spineIndex; i++) {
System.arraycopy(spine[i], 0, array, offset, spine[i].length);
offset += spine[i].length;
}
if(elementIndex>0) {
System.arraycopy(curChunk, 0, array, offset, elementIndex);
}
}
}
// 尝试用consumer消费当前弹性缓冲区中所有元素
@Override
public void forEach(Consumer<? super E> consumer) {
// completed chunks, if any
for(int j = 0; j<spineIndex; j++) {
for(E t : spine[j]) {
consumer.accept(t);
}
}
// current chunk
for(int i = 0; i<elementIndex; i++) {
consumer.accept(curChunk[i]);
}
}
// 清空弹性缓冲区
@Override
public void clear() {
if(spine != null) {
curChunk = spine[0];
Arrays.fill(curChunk, null);
spine = null;
priorElementCount = null;
} else {
for(int i = 0; i<elementIndex; i++) {
curChunk[i] = null;
}
}
elementIndex = 0;
spineIndex = 0;
}
/**
* Returns the current capacity of the buffer
*/
// 返回弹性缓冲区的容量
protected long capacity() {
if(spineIndex == 0) {
return curChunk.length;
}
return priorElementCount[spineIndex] + spine[spineIndex].length;
}
/**
* Ensure that the buffer has at least capacity to hold the target size
*/
// 确保弹性缓冲区容量充足;targetSize是期望的容量
@SuppressWarnings("unchecked")
protected final void ensureCapacity(long targetSize) {
// 返回当前弹性缓冲区的容量
long capacity = capacity();
// 当前容量大于需要的容量时,不需要申请新空间,直接返回
if(targetSize<=capacity) {
return;
}
// 确保二维缓存已经初始化
inflateSpine();
for(int i = spineIndex + 1; targetSize>capacity; i++) {
// 如果二维缓存满了,需要先对二维缓存扩容
if(i >= spine.length) {
int newSpineSize = spine.length * 2;
// 旧元素移动的新的缓冲区
spine = Arrays.copyOf(spine, newSpineSize);
priorElementCount = Arrays.copyOf(priorElementCount, newSpineSize);
}
// 获取下一个新建chunk的容量
int nextChunkSize = chunkSize(i);
// 为二维缓存增加一行的空间
spine[i] = (E[]) new Object[nextChunkSize];
// 累计元素个数
priorElementCount[i] = priorElementCount[i - 1] + spine[i - 1].length;
capacity += nextChunkSize;
}
}
/**
* Force the buffer to increase its capacity.
*/
/*
* 新建一维缓存,这个过程可能伴随着二维缓存的扩容。
*
* 如果二维缓存也满了,则需要对二维缓存扩容;
* 如果二维缓存没满,但是没有可用的空闲行缓存,则需要新建一行作为一维缓存。
*/
protected void increaseCapacity() {
// 确保弹性缓冲区容量充足
ensureCapacity(capacity() + 1);
}
// 确保二维缓存已经初始化
@SuppressWarnings("unchecked")
private void inflateSpine() {
if(spine != null) {
return;
}
spine = (E[][]) new Object[MIN_SPINE_SIZE][];
priorElementCount = new long[MIN_SPINE_SIZE];
spine[0] = curChunk;
}
// 返回弹性缓冲区的迭代器
@Override
public Iterator<E> iterator() {
// 获取当前弹性缓冲区的流迭代器
Spliterator<E> spliterator = spliterator();
// 将Spliterator适配为Iterator(引用类型版本)
return Spliterators.iterator(spliterator);
}
/**
* Return a {@link Spliterator} describing the contents of the buffer.
*/
// 返回弹性缓冲区的流迭代器
public Spliterator<E> spliterator() {
// 弹性缓冲区的流迭代器
class Splitr implements Spliterator<E> {
/** The current spine index */
int splSpineIndex; // 二维缓存起始索引
/** Last spine index */
final int lastSpineIndex; // 二维缓存终点索引
/** The current element index into the current spine */
int splElementIndex; // 一维缓存起始索引
/** Last spine's last element index + 1 */
final int lastSpineElementFence; // 一维缓存终点索引
/**
* When splSpineIndex >= lastSpineIndex
* and splElementIndex >= lastSpineElementFence
* then this spliterator is fully traversed
* tryAdvance can set splSpineIndex > spineIndex if the last spine is full
*/
// The current spine array
E[] splChunk; // 存储当前的chunk,内容会随着遍历而变化
Splitr(int firstSpineIndex, int lastSpineIndex, int firstSpineElementIndex, int lastSpineElementFence) {
this.splSpineIndex = firstSpineIndex;
this.lastSpineIndex = lastSpineIndex;
this.splElementIndex = firstSpineElementIndex;
this.lastSpineElementFence = lastSpineElementFence;
assert spine != null || firstSpineIndex == 0 && lastSpineIndex == 0;
splChunk = (spine == null) ? curChunk : spine[firstSpineIndex];
}
/*
* 返回流迭代器中剩余未消费的元素数量(可能不精确)
*
* 如果数据量无限、未知、计算成本过高,则返回Long.MAX_VALUE;
* 否则,如果数据量有限,则通常应返回剩余未消费的元素总量。
*/
@Override
public long estimateSize() {
return (splSpineIndex == lastSpineIndex) ? (long) lastSpineElementFence - splElementIndex : priorElementCount[lastSpineIndex] + lastSpineElementFence - // # of elements prior to end -
priorElementCount[splSpineIndex] - splElementIndex; // # of elements prior to current
}
// 返回流迭代器的参数
@Override
public int characteristics() {
return SPLITERATOR_CHARACTERISTICS;
}
/*
* 尝试用action消费当前流迭代器中下一个元素。
* 返回值指示是否找到了下一个元素。
*
* 注1:该操作可能会引起内部游标的变化
* 注2:该操作可能会顺着sink链向下游传播
*/
@Override
public boolean tryAdvance(Consumer<? super E> consumer) {
Objects.requireNonNull(consumer);
if(splSpineIndex >= lastSpineIndex && (splSpineIndex != lastSpineIndex || splElementIndex >= lastSpineElementFence)) {
return false;
}
consumer.accept(splChunk[splElementIndex++]);
if(splElementIndex == splChunk.length) {
splElementIndex = 0;
++splSpineIndex;
if(spine != null && splSpineIndex<=lastSpineIndex) {
splChunk = spine[splSpineIndex];
}
}
return true;
}
/*
* 尝试用consumer消费当前Spliterator中所有元素。
*
* 注1:该操作可能会引起内部游标的变化
* 注2:该操作可能会顺着sink链向下游传播
*/
@Override
public void forEachRemaining(Consumer<? super E> consumer) {
Objects.requireNonNull(consumer);
if(splSpineIndex<lastSpineIndex || (splSpineIndex == lastSpineIndex && splElementIndex<lastSpineElementFence)) {
int i = splElementIndex;
// completed chunks, if any
for(int sp = splSpineIndex; sp<lastSpineIndex; sp++) {
E[] chunk = spine[sp];
for(; i<chunk.length; i++) {
consumer.accept(chunk[i]);
}
i = 0;
}
// last (or current uncompleted) chunk
E[] chunk = (splSpineIndex == lastSpineIndex) ? splChunk : spine[lastSpineIndex];
for(; i<lastSpineElementFence; i++) {
consumer.accept(chunk[i]);
}
// mark consumed
splSpineIndex = lastSpineIndex;
splElementIndex = lastSpineElementFence;
}
}
/*
* 返回子Spliterator,该子Spliterator内持有原Spliterator的部分数据。
*
* 注1:该操作可能会引起内部游标的变化
* 注2:子Spliterator的参数可能发生改变
*/
@Override
public Spliterator<E> trySplit() {
// 丢弃未完成的那行chunk
if(splSpineIndex<lastSpineIndex) {
// split just before last chunk (if it is full this means 50:50 split)
Spliterator<E> ret = new Splitr(splSpineIndex, lastSpineIndex - 1, splElementIndex, spine[lastSpineIndex - 1].length);
// position to start of last chunk
splSpineIndex = lastSpineIndex;
splElementIndex = 0;
splChunk = spine[splSpineIndex];
return ret;
}
// 取一半
if(splSpineIndex == lastSpineIndex) {
int t = (lastSpineElementFence - splElementIndex) / 2;
if(t == 0) {
return null;
}
Spliterator<E> ret = Arrays.spliterator(splChunk, splElementIndex, splElementIndex + t);
splElementIndex += t;
return ret;
}
return null;
}
}
return new Splitr(0, spineIndex, 0, elementIndex);
}
@Override
public String toString() {
List<E> list = new ArrayList<>();
forEach(list::add);
return "SpinedBuffer:" + list.toString();
}
/**
* An ordered collection of primitive values. Elements can be added, but
* not removed. Goes through a building phase, during which elements can be
* added, and a traversal phase, during which elements can be traversed in
* order but no further modifications are possible.
*
* <p> One or more arrays are used to store elements. The use of a multiple
* arrays has better performance characteristics than a single array used by
* {@link ArrayList}, as when the capacity of the list needs to be increased
* no copying of elements is required. This is usually beneficial in the case
* where the results will be traversed a small number of times.
*
* @param <E> the wrapper type for this primitive type
* @param <T_ARR> the array type for this primitive type
* @param <T_CONS> the Consumer type for this primitive type
*/
// 弹性缓冲区(基本数值类型版本)
abstract static class OfPrimitive<E, T_ARR, T_CONS> extends AbstractSpinedBuffer implements Iterable<E> {
/*
* We optimistically hope that all the data will fit into the first chunk,
* so we try to avoid inflating the spine[] and priorElementCount[] arrays
* prematurely. So methods must be prepared to deal with these arrays being
* null. If spine is non-null, then spineIndex points to the current chunk
* within the spine, otherwise it is zero. The spine and priorElementCount
* arrays are always the same size, and for any i <= spineIndex,
* priorElementCount[i] is the sum of the sizes of all the prior chunks.
*
* The curChunk pointer is always valid. The elementIndex is the index of
* the next element to be written in curChunk; this may be past the end of
* curChunk so we have to check before writing. When we inflate the spine
* array, curChunk becomes the first element in it. When we clear the
* buffer, we discard all chunks except the first one, which we clear,
* restoring it to the initial single-chunk state.
*/
// The chunk we're currently writing into
T_ARR curChunk; // 一维缓存
// All chunks, or null if there is only one chunk
T_ARR[] spine; // 二维缓存
/**
* Constructs an empty list with an initial capacity of sixteen.
*/
OfPrimitive() {
super();
curChunk = newArray(1 << initialChunkPower);
}
/**
* Constructs an empty list with the specified initial capacity.
*
* @param initialCapacity the initial capacity of the list
*
* @throws IllegalArgumentException if the specified initial capacity
* is negative
*/
OfPrimitive(int initialCapacity) {
super(initialCapacity);
curChunk = newArray(1 << initialChunkPower);
}
// 返回适用于该SpinedBuffer的Iterator
@Override
public abstract Iterator<E> iterator();
// 遍历SpinedBuffer中的元素,并在其上应用consumer函数
@Override
public abstract void forEach(Consumer<? super E> consumer);
/** Create a new array of the proper type and size */
// 创建T_ARR类型的一维数组
public abstract T_ARR newArray(int size);
/** Create a new array-of-array of the proper type and size */
// 创建T_ARR类型的二维数组
protected abstract T_ARR[] newArrayArray(int size);
/** Get the length of an array */
// 返回数组array的容量
protected abstract int arrayLength(T_ARR array);
/** Iterate an array with the provided consumer */
// 遍历数组form到to范围的元素,在其上应用consumer函数
protected abstract void arrayForEach(T_ARR array, int from, int to, T_CONS consumer);
// 传入需要的容量,确保SpinedBuffer容量充足,不够的话就分配
protected final void ensureCapacity(long targetSize) {
long capacity = capacity();
if(targetSize<=capacity) {
return;
}
inflateSpine();
for(int i = spineIndex + 1; targetSize>capacity; i++) {
if(i >= spine.length) {
int newSpineSize = spine.length * 2;
spine = Arrays.copyOf(spine, newSpineSize);
priorElementCount = Arrays.copyOf(priorElementCount, newSpineSize);
}
// 返回即将分配的chunk应当包含的元素个数
int nextChunkSize = chunkSize(i);
spine[i] = newArray(nextChunkSize);
priorElementCount[i] = priorElementCount[i - 1] + arrayLength(spine[i - 1]);
capacity += nextChunkSize;
}
}
// 将SpinedBuffer中的内容复制到数组array的offset偏移中
public void copyInto(T_ARR array, int offset) {
long finalOffset = offset + count();
if(finalOffset>arrayLength(array) || finalOffset<offset) {
throw new IndexOutOfBoundsException("does not fit");
}
if(spineIndex == 0) {
System.arraycopy(curChunk, 0, array, offset, elementIndex);
} else {
// full chunks
for(int i = 0; i<spineIndex; i++) {
System.arraycopy(spine[i], 0, array, offset, arrayLength(spine[i]));
offset += arrayLength(spine[i]);
}
if(elementIndex>0) {
System.arraycopy(curChunk, 0, array, offset, elementIndex);
}
}
}
// 将SpinedBuffer中的元素存入基本类型数组后返回
public T_ARR asPrimitiveArray() {
long size = count();
if(size >= Nodes.MAX_ARRAY_SIZE) {
throw new IllegalArgumentException(Nodes.BAD_SIZE);
}
T_ARR result = newArray((int) size);
copyInto(result, 0);
return result;
}
// 清空SpinedBuffer
public void clear() {
if(spine != null) {
curChunk = spine[0];
spine = null;
priorElementCount = null;
}
elementIndex = 0;
spineIndex = 0;
}
// 遍历SpinedBuffer中的元素,并在其上应用consumer函数
@SuppressWarnings("overloads")
public void forEach(T_CONS consumer) {
// completed chunks, if any
for(int j = 0; j<spineIndex; j++) {
arrayForEach(spine[j], 0, arrayLength(spine[j]), consumer);
}
// current chunk
arrayForEach(curChunk, 0, elementIndex, consumer);
}
// 返回当前SpinedBuffer的容量
protected long capacity() {
return (spineIndex == 0)
? arrayLength(curChunk)
: priorElementCount[spineIndex] + arrayLength(spine[spineIndex]);
}
// 扩容,比当前容量多一个元素,往往会分配更多的空间
protected void increaseCapacity() {
ensureCapacity(capacity() + 1);
}
// 查找索引index处的元素所在的chunk的索引
protected int chunkFor(long index) {
if(spineIndex == 0) {
if(index<elementIndex) {
return 0;
} else {
throw new IndexOutOfBoundsException(Long.toString(index));
}
}
if(index >= count()) {
throw new IndexOutOfBoundsException(Long.toString(index));
}
for(int j = 0; j<=spineIndex; j++) {
if(index<priorElementCount[j] + arrayLength(spine[j])) {
return j;
}
}
throw new IndexOutOfBoundsException(Long.toString(index));
}
// 预存,即判断当前容量是否充足,不充足的话需要扩容
protected void preAccept() {
if(elementIndex == arrayLength(curChunk)) {
inflateSpine();
if(spineIndex + 1 >= spine.length || spine[spineIndex + 1] == null) {
increaseCapacity();
}
elementIndex = 0;
++spineIndex;
curChunk = spine[spineIndex];
}
}
// 初始化二维缓存
private void inflateSpine() {
if(spine != null) {
return;
}
spine = newArrayArray(MIN_SPINE_SIZE);
priorElementCount = new long[MIN_SPINE_SIZE];
spine[0] = curChunk;
}
// 弹性缓冲区的流迭代器(基本数值类型版本)
abstract class BaseSpliterator<T_SPLITR extends Spliterator.OfPrimitive<E, T_CONS, T_SPLITR>> implements Spliterator.OfPrimitive<E, T_CONS, T_SPLITR> {
// Last spine index
final int lastSpineIndex;
// Last spine's last element index + 1
final int lastSpineElementFence;
// The current spine index
int splSpineIndex;
// The current element index into the current spine
int splElementIndex;
// When splSpineIndex >= lastSpineIndex and
// splElementIndex >= lastSpineElementFence then
// this spliterator is fully traversed
// tryAdvance can set splSpineIndex > spineIndex if the last spine is full
// The current spine array
T_ARR splChunk;
BaseSpliterator(int firstSpineIndex, int lastSpineIndex, int firstSpineElementIndex, int lastSpineElementFence) {
this.splSpineIndex = firstSpineIndex;
this.lastSpineIndex = lastSpineIndex;
this.splElementIndex = firstSpineElementIndex;
this.lastSpineElementFence = lastSpineElementFence;
assert spine != null || firstSpineIndex == 0 && lastSpineIndex == 0;
splChunk = (spine == null) ? curChunk : spine[firstSpineIndex];
}
abstract T_SPLITR newSpliterator(int firstSpineIndex, int lastSpineIndex, int firstSpineElementIndex, int lastSpineElementFence);
abstract void arrayForOne(T_ARR array, int index, T_CONS consumer);
abstract T_SPLITR arraySpliterator(T_ARR array, int offset, int len);
/*
* 返回子Spliterator,该子Spliterator内持有原Spliterator的部分数据。
*
* 注1:该操作可能会引起内部游标的变化
* 注2:子Spliterator的参数可能发生改变
*/
@Override
public T_SPLITR trySplit() {
if(splSpineIndex<lastSpineIndex) {
// split just before last chunk (if it is full this means 50:50 split)
T_SPLITR ret = newSpliterator(splSpineIndex, lastSpineIndex - 1, splElementIndex, arrayLength(spine[lastSpineIndex - 1]));
// position us to start of last chunk
splSpineIndex = lastSpineIndex;
splElementIndex = 0;
splChunk = spine[splSpineIndex];
return ret;
}
if(splSpineIndex == lastSpineIndex) {
int t = (lastSpineElementFence - splElementIndex) / 2;
if(t == 0) {
return null;
}
T_SPLITR ret = arraySpliterator(splChunk, splElementIndex, t);
splElementIndex += t;
return ret;
}
return null;
}
/*
* 尝试用consumer消费当前流迭代器中下一个元素。
* 返回值指示是否找到了下一个元素。
*
* 注1:该操作可能会引起内部游标的变化
* 注2:该操作可能会顺着sink链向下游传播
*/
@Override
public boolean tryAdvance(T_CONS consumer) {
Objects.requireNonNull(consumer);
if(splSpineIndex<lastSpineIndex || (splSpineIndex == lastSpineIndex && splElementIndex<lastSpineElementFence)) {
arrayForOne(splChunk, splElementIndex++, consumer);
if(splElementIndex == arrayLength(splChunk)) {
splElementIndex = 0;
++splSpineIndex;
if(spine != null && splSpineIndex<=lastSpineIndex) {
splChunk = spine[splSpineIndex];
}
}
return true;
}
return false;
}
/*
* 尝试用consumer逐个消费当前流迭代器中所有剩余元素。
*
* 注1:该操作可能会引起内部游标的变化
* 注2:该操作可能会顺着sink链向下游传播
*/
@Override
public void forEachRemaining(T_CONS consumer) {
Objects.requireNonNull(consumer);
if(splSpineIndex<lastSpineIndex || (splSpineIndex == lastSpineIndex && splElementIndex<lastSpineElementFence)) {
int i = splElementIndex;
// completed chunks, if any
for(int sp = splSpineIndex; sp<lastSpineIndex; sp++) {
T_ARR chunk = spine[sp];
arrayForEach(chunk, i, arrayLength(chunk), consumer);
i = 0;
}
// last (or current uncompleted) chunk
T_ARR chunk = (splSpineIndex == lastSpineIndex) ? splChunk : spine[lastSpineIndex];
arrayForEach(chunk, i, lastSpineElementFence, consumer);
// mark consumed
splSpineIndex = lastSpineIndex;
splElementIndex = lastSpineElementFence;
}
}
/*
* 初始时,返回流迭代器中的元素总量(可能不精确)。
* 如果数据量无限、未知、计算成本过高,则可以返回Long.MAX_VALUE。
* 当访问过流迭代器中的元素后,此处的返回值可能是元素总量,也可能是剩余未访问的元素数量,依实现而定。
*/
@Override
public long estimateSize() {
if(splSpineIndex == lastSpineIndex) {
return (long) lastSpineElementFence - splElementIndex;
}
return priorElementCount[lastSpineIndex] + lastSpineElementFence - priorElementCount[splSpineIndex] - splElementIndex;
}
// 返回流迭代器的参数
@Override
public int characteristics() {
return SPLITERATOR_CHARACTERISTICS;
}
}
}
/**
* An ordered collection of {@code int} values.
*/
// 弹性缓冲区(int类型版本)
static class OfInt extends SpinedBuffer.OfPrimitive<Integer, int[], IntConsumer> implements IntConsumer {
OfInt() {
}
OfInt(int initialCapacity) {
super(initialCapacity);
}
// 遍历SpinedBuffer中的元素,并在其上应用consumer函数
@Override
public void forEach(Consumer<? super Integer> consumer) {
if(consumer instanceof IntConsumer) {
forEach((IntConsumer) consumer);
} else {
if(Tripwire.ENABLED) {
Tripwire.trip(getClass(), "{0} calling SpinedBuffer.OfInt.forEach(Consumer)");
}
spliterator().forEachRemaining(consumer);
}
}
// 创建int[]数组
@Override
public int[] newArray(int size) {
return new int[size];
}
// 创建int[][]数组
@Override
protected int[][] newArrayArray(int size) {
return new int[size][];
}
// 将元素i存入SpinedBuffer
@Override
public void accept(int i) {
preAccept();
curChunk[elementIndex++] = i;
}
// 返回索引index处的元素
public int get(long index) {
// Casts to int are safe since the spine array index is the index minus the prior element count from the current spine
int ch = chunkFor(index);
if(spineIndex == 0 && ch == 0) {
return curChunk[(int) index];
} else {
return spine[ch][(int) (index - priorElementCount[ch])];
}
}
// 返回数组array的容量
@Override
protected int arrayLength(int[] array) {
return array.length;
}
// 遍历数组form到to范围的元素,在其上应用consumer函数
@Override
protected void arrayForEach(int[] array, int from, int to, IntConsumer consumer) {
for(int i = from; i<to; i++) {
consumer.accept(array[i]);
}
}
// 返回适用于该SpinedBuffer的Iterator
@Override
public PrimitiveIterator.OfInt iterator() {
return Spliterators.iterator(spliterator());
}
// 返回弹性缓冲区的流迭代器
public Spliterator.OfInt spliterator() {
// 弹性缓冲区的流迭代器(int类型版本)
class Splitr extends BaseSpliterator<Spliterator.OfInt> implements Spliterator.OfInt {
Splitr(int firstSpineIndex, int lastSpineIndex, int firstSpineElementIndex, int lastSpineElementFence) {
super(firstSpineIndex, lastSpineIndex, firstSpineElementIndex, lastSpineElementFence);
}
@Override
Splitr newSpliterator(int firstSpineIndex, int lastSpineIndex, int firstSpineElementIndex, int lastSpineElementFence) {
return new Splitr(firstSpineIndex, lastSpineIndex, firstSpineElementIndex, lastSpineElementFence);
}
@Override
void arrayForOne(int[] array, int index, IntConsumer consumer) {
consumer.accept(array[index]);