-
Notifications
You must be signed in to change notification settings - Fork 668
/
LinkedHashMap.java
940 lines (795 loc) · 38.1 KB
/
LinkedHashMap.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
/*
* Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package java.util;
import java.io.IOException;
import java.util.function.BiConsumer;
import java.util.function.BiFunction;
import java.util.function.Consumer;
/**
* <p>Hash table and linked list implementation of the {@code Map} interface,
* with predictable iteration order. This implementation differs from
* {@code HashMap} in that it maintains a doubly-linked list running through
* all of its entries. This linked list defines the iteration ordering,
* which is normally the order in which keys were inserted into the map
* (<i>insertion-order</i>). Note that insertion order is not affected
* if a key is <i>re-inserted</i> into the map. (A key {@code k} is
* reinserted into a map {@code m} if {@code m.put(k, v)} is invoked when
* {@code m.containsKey(k)} would return {@code true} immediately prior to
* the invocation.)
*
* <p>This implementation spares its clients from the unspecified, generally
* chaotic ordering provided by {@link HashMap} (and {@link Hashtable}),
* without incurring the increased cost associated with {@link TreeMap}. It
* can be used to produce a copy of a map that has the same order as the
* original, regardless of the original map's implementation:
* <pre>
* void foo(Map m) {
* Map copy = new LinkedHashMap(m);
* ...
* }
* </pre>
* This technique is particularly useful if a module takes a map on input,
* copies it, and later returns results whose order is determined by that of
* the copy. (Clients generally appreciate having things returned in the same
* order they were presented.)
*
* <p>A special {@link #LinkedHashMap(int,float,boolean) constructor} is
* provided to create a linked hash map whose order of iteration is the order
* in which its entries were last accessed, from least-recently accessed to
* most-recently (<i>access-order</i>). This kind of map is well-suited to
* building LRU caches. Invoking the {@code put}, {@code putIfAbsent},
* {@code get}, {@code getOrDefault}, {@code compute}, {@code computeIfAbsent},
* {@code computeIfPresent}, or {@code merge} methods results
* in an access to the corresponding entry (assuming it exists after the
* invocation completes). The {@code replace} methods only result in an access
* of the entry if the value is replaced. The {@code putAll} method generates one
* entry access for each mapping in the specified map, in the order that
* key-value mappings are provided by the specified map's entry set iterator.
* <i>No other methods generate entry accesses.</i> In particular, operations
* on collection-views do <i>not</i> affect the order of iteration of the
* backing map.
*
* <p>The {@link #removeEldestEntry(Map.Entry)} method may be overridden to
* impose a policy for removing stale mappings automatically when new mappings
* are added to the map.
*
* <p>This class provides all of the optional {@code Map} operations, and
* permits null elements. Like {@code HashMap}, it provides constant-time
* performance for the basic operations ({@code add}, {@code contains} and
* {@code remove}), assuming the hash function disperses elements
* properly among the buckets. Performance is likely to be just slightly
* below that of {@code HashMap}, due to the added expense of maintaining the
* linked list, with one exception: Iteration over the collection-views
* of a {@code LinkedHashMap} requires time proportional to the <i>size</i>
* of the map, regardless of its capacity. Iteration over a {@code HashMap}
* is likely to be more expensive, requiring time proportional to its
* <i>capacity</i>.
*
* <p>A linked hash map has two parameters that affect its performance:
* <i>initial capacity</i> and <i>load factor</i>. They are defined precisely
* as for {@code HashMap}. Note, however, that the penalty for choosing an
* excessively high value for initial capacity is less severe for this class
* than for {@code HashMap}, as iteration times for this class are unaffected
* by capacity.
*
* <p><strong>Note that this implementation is not synchronized.</strong>
* If multiple threads access a linked hash map concurrently, and at least
* one of the threads modifies the map structurally, it <em>must</em> be
* synchronized externally. This is typically accomplished by
* synchronizing on some object that naturally encapsulates the map.
*
* If no such object exists, the map should be "wrapped" using the
* {@link Collections#synchronizedMap Collections.synchronizedMap}
* method. This is best done at creation time, to prevent accidental
* unsynchronized access to the map:<pre>
* Map m = Collections.synchronizedMap(new LinkedHashMap(...));</pre>
*
* A structural modification is any operation that adds or deletes one or more
* mappings or, in the case of access-ordered linked hash maps, affects
* iteration order. In insertion-ordered linked hash maps, merely changing
* the value associated with a key that is already contained in the map is not
* a structural modification. <strong>In access-ordered linked hash maps,
* merely querying the map with {@code get} is a structural modification.
* </strong>)
*
* <p>The iterators returned by the {@code iterator} method of the collections
* returned by all of this class's collection view methods are
* <em>fail-fast</em>: if the map is structurally modified at any time after
* the iterator is created, in any way except through the iterator's own
* {@code remove} method, the iterator will throw a {@link
* ConcurrentModificationException}. Thus, in the face of concurrent
* modification, the iterator fails quickly and cleanly, rather than risking
* arbitrary, non-deterministic behavior at an undetermined time in the future.
*
* <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
* as it is, generally speaking, impossible to make any hard guarantees in the
* presence of unsynchronized concurrent modification. Fail-fast iterators
* throw {@code ConcurrentModificationException} on a best-effort basis.
* Therefore, it would be wrong to write a program that depended on this
* exception for its correctness: <i>the fail-fast behavior of iterators
* should be used only to detect bugs.</i>
*
* <p>The spliterators returned by the spliterator method of the collections
* returned by all of this class's collection view methods are
* <em><a href="Spliterator.html#binding">late-binding</a></em>,
* <em>fail-fast</em>, and additionally report {@link Spliterator#ORDERED}.
*
* <p>This class is a member of the
* <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework">
* Java Collections Framework</a>.
*
* @implNote
* The spliterators returned by the spliterator method of the collections
* returned by all of this class's collection view methods are created from
* the iterators of the corresponding collections.
*
* @param <K> the type of keys maintained by this map
* @param <V> the type of mapped values
*
* @author Josh Bloch
* @see Object#hashCode()
* @see Collection
* @see Map
* @see HashMap
* @see TreeMap
* @see Hashtable
* @since 1.4
*/
/*
* LinkedHashMap是有序Map,也是HashMap的子类,其基础结构与HashMap一致
* 这里有序的含义是说其遍历顺序与元素加入的顺序有关
* 该Map中的元素按其加入的顺序,为其额外建立了前后链接
*
* 普通情况下,LinkedHashMap的遍历操作中,元素顺序就是其加入到Map时的顺序
* 如果开启了accessOrder标记,那么元素顺序与每个元素被访问的频率也有关
*/
public class LinkedHashMap<K, V> extends HashMap<K, V> implements Map<K, V> {
/*
* Implementation note. A previous version of this class was
* internally structured a little differently. Because superclass
* HashMap now uses trees for some of its nodes, class
* LinkedHashMap.Entry is now treated as intermediary node class
* that can also be converted to tree form. The name of this
* class, LinkedHashMap.Entry, is confusing in several ways in its
* current context, but cannot be changed. Otherwise, even though
* it is not exported outside this package, some existing source
* code is known to have relied on a symbol resolution corner case
* rule in calls to removeEldestEntry that suppressed compilation
* errors due to ambiguous usages. So, we keep the name to
* preserve unmodified compilability.
*
* The changes in node classes also require using two fields
* (head, tail) rather than a pointer to a header node to maintain
* the doubly-linked before/after list. This class also
* previously used a different style of callback methods upon
* access, insertion, and removal.
*/
private static final long serialVersionUID = 3801124242820219131L;
/**
* The iteration ordering method for this linked hash map: {@code true}
* for access-order, {@code false} for insertion-order.
*
* @serial
*/
// 是否开启afterNodeAccess()功能
final boolean accessOrder;
/**
* The head (eldest) of the doubly linked list.
*/
// 将加入的结点串成一个链表,head指向表头
transient LinkedHashMap.Entry<K, V> head;
/**
* The tail (youngest) of the doubly linked list.
*/
// 将加入的结点串成一个链表,tail指向表尾
transient LinkedHashMap.Entry<K, V> tail;
/*▼ 构造器 ████████████████████████████████████████████████████████████████████████████████┓ */
/**
* Constructs an empty insertion-ordered {@code LinkedHashMap} instance
* with the default initial capacity (16) and load factor (0.75).
*/
public LinkedHashMap() {
super();
accessOrder = false;
}
/**
* Constructs an empty insertion-ordered {@code LinkedHashMap} instance
* with the specified initial capacity and a default load factor (0.75).
*
* @param initialCapacity the initial capacity
*
* @throws IllegalArgumentException if the initial capacity is negative
*/
public LinkedHashMap(int initialCapacity) {
super(initialCapacity);
accessOrder = false;
}
/**
* Constructs an empty insertion-ordered {@code LinkedHashMap} instance
* with the specified initial capacity and load factor.
*
* @param initialCapacity the initial capacity
* @param loadFactor the load factor
*
* @throws IllegalArgumentException if the initial capacity is negative
* or the load factor is nonpositive
*/
public LinkedHashMap(int initialCapacity, float loadFactor) {
super(initialCapacity, loadFactor);
accessOrder = false;
}
/**
* Constructs an empty {@code LinkedHashMap} instance with the
* specified initial capacity, load factor and ordering mode.
*
* @param initialCapacity the initial capacity
* @param loadFactor the load factor
* @param accessOrder the ordering mode - {@code true} for
* access-order, {@code false} for insertion-order
*
* @throws IllegalArgumentException if the initial capacity is negative
* or the load factor is nonpositive
*/
public LinkedHashMap(int initialCapacity, float loadFactor, boolean accessOrder) {
super(initialCapacity, loadFactor);
this.accessOrder = accessOrder;
}
/**
* Constructs an insertion-ordered {@code LinkedHashMap} instance with
* the same mappings as the specified map. The {@code LinkedHashMap}
* instance is created with a default load factor (0.75) and an initial
* capacity sufficient to hold the mappings in the specified map.
*
* @param m the map whose mappings are to be placed in this map
*
* @throws NullPointerException if the specified map is null
*/
public LinkedHashMap(Map<? extends K, ? extends V> map) {
super();
accessOrder = false;
// 将指定LinkedHashMap中的元素存入到当前LinkedHashMap(允许覆盖)
putMapEntries(map, false);
}
/*▲ 构造器 ████████████████████████████████████████████████████████████████████████████████┛ */
/*▼ 取值 ████████████████████████████████████████████████████████████████████████████████┓ */
/**
* Returns the value to which the specified key is mapped,
* or {@code null} if this map contains no mapping for the key.
*
* <p>More formally, if this map contains a mapping from a key
* {@code k} to a value {@code v} such that {@code (key==null ? k==null :
* key.equals(k))}, then this method returns {@code v}; otherwise
* it returns {@code null}. (There can be at most one such mapping.)
*
* <p>A return value of {@code null} does not <i>necessarily</i>
* indicate that the map contains no mapping for the key; it's also
* possible that the map explicitly maps the key to {@code null}.
* The {@link #containsKey containsKey} operation may be used to
* distinguish these two cases.
*/
// 根据指定的key获取对应的value,如果不存在,则返回null
public V get(Object key) {
// 根据给定的key和hash(由key计算而来)查找对应的(同位)元素,如果找不到,则返回null
Node<K, V> e = getNode(hash(key), key);
if(e == null) {
return null;
}
if(accessOrder) {
afterNodeAccess(e);
}
return e.value;
}
/**
* {@inheritDoc}
*/
// 根据指定的key获取对应的value,如果不存在,则返回指定的默认值defaultValue
public V getOrDefault(Object key, V defaultValue) {
// 根据给定的key和hash(由key计算而来)查找对应的(同位)元素,如果找不到,则返回null
Node<K, V> e = getNode(hash(key), key);
if(e == null) {
return defaultValue;
}
if(accessOrder) {
afterNodeAccess(e);
}
return e.value;
}
/*▲ 取值 ████████████████████████████████████████████████████████████████████████████████┛ */
/*▼ 替换 ████████████████████████████████████████████████████████████████████████████████┓ */
// 替换当前HashMap中的所有元素,替换策略由function决定,function的入参是元素的key和value,出参作为新值
public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
if(function == null) {
throw new NullPointerException();
}
int mc = modCount;
for(LinkedHashMap.Entry<K, V> e = head; e != null; e = e.after) {
e.value = function.apply(e.key, e.value);
}
if(modCount != mc) {
throw new ConcurrentModificationException();
}
}
/*▲ 替换 ████████████████████████████████████████████████████████████████████████████████┛ */
/*▼ 包含查询 ████████████████████████████████████████████████████████████████████████████████┓ */
/**
* Returns {@code true} if this map maps one or more keys to the
* specified value.
*
* @param value value whose presence in this map is to be tested
*
* @return {@code true} if this map maps one or more keys to the
* specified value
*/
// 判断LinkedHashMap中是否存在指定value的元素
public boolean containsValue(Object value) {
for(LinkedHashMap.Entry<K, V> e = head; e != null; e = e.after) {
V v = e.value;
if(v == value || (value != null && value.equals(v))) {
return true;
}
}
return false;
}
/*▲ 包含查询 ████████████████████████████████████████████████████████████████████████████████┛ */
/*▼ 视图 ████████████████████████████████████████████████████████████████████████████████┓ */
/**
* Returns a {@link Set} view of the keys contained in this map.
* The set is backed by the map, so changes to the map are
* reflected in the set, and vice-versa. If the map is modified
* while an iteration over the set is in progress (except through
* the iterator's own {@code remove} operation), the results of
* the iteration are undefined. The set supports element removal,
* which removes the corresponding mapping from the map, via the
* {@code Iterator.remove}, {@code Set.remove},
* {@code removeAll}, {@code retainAll}, and {@code clear}
* operations. It does not support the {@code add} or {@code addAll}
* operations.
* Its {@link Spliterator} typically provides faster sequential
* performance but much poorer parallel performance than that of
* {@code HashMap}.
*
* @return a set view of the keys contained in this map
*/
// 获取LinkedHashMap中key的集合
public Set<K> keySet() {
Set<K> ks = keySet;
if(ks == null) {
ks = new LinkedKeySet();
keySet = ks;
}
return ks;
}
/**
* Returns a {@link Collection} view of the values contained in this map.
* The collection is backed by the map, so changes to the map are
* reflected in the collection, and vice-versa. If the map is
* modified while an iteration over the collection is in progress
* (except through the iterator's own {@code remove} operation),
* the results of the iteration are undefined. The collection
* supports element removal, which removes the corresponding
* mapping from the map, via the {@code Iterator.remove},
* {@code Collection.remove}, {@code removeAll},
* {@code retainAll} and {@code clear} operations. It does not
* support the {@code add} or {@code addAll} operations.
* Its {@link Spliterator} typically provides faster sequential
* performance but much poorer parallel performance than that of
* {@code HashMap}.
*
* @return a view of the values contained in this map
*/
// 获取LinkedHashMap中value的集合
public Collection<V> values() {
Collection<V> vs = values;
if(vs == null) {
vs = new LinkedValues();
values = vs;
}
return vs;
}
/**
* Returns a {@link Set} view of the mappings contained in this map.
* The set is backed by the map, so changes to the map are
* reflected in the set, and vice-versa. If the map is modified
* while an iteration over the set is in progress (except through
* the iterator's own {@code remove} operation, or through the
* {@code setValue} operation on a map entry returned by the
* iterator) the results of the iteration are undefined. The set
* supports element removal, which removes the corresponding
* mapping from the map, via the {@code Iterator.remove},
* {@code Set.remove}, {@code removeAll}, {@code retainAll} and
* {@code clear} operations. It does not support the
* {@code add} or {@code addAll} operations.
* Its {@link Spliterator} typically provides faster sequential
* performance but much poorer parallel performance than that of
* {@code HashMap}.
*
* @return a set view of the mappings contained in this map
*/
// 获取LinkedHashMap中key-value对的集合
public Set<Map.Entry<K, V>> entrySet() {
Set<Map.Entry<K, V>> es;
return (es = entrySet) == null ? (entrySet = new LinkedEntrySet()) : es;
}
/*▲ 视图 ████████████████████████████████████████████████████████████████████████████████┛ */
/*▼ 遍历 ████████████████████████████████████████████████████████████████████████████████┓ */
// 遍历LinkedHashMap中的元素,并对其应用action操作,action的入参是元素的key和value
public void forEach(BiConsumer<? super K, ? super V> action) {
if(action == null) {
throw new NullPointerException();
}
int mc = modCount;
for(LinkedHashMap.Entry<K, V> e = head; e != null; e = e.after) {
action.accept(e.key, e.value);
}
if(modCount != mc) {
throw new ConcurrentModificationException();
}
}
/*▲ 遍历 ████████████████████████████████████████████████████████████████████████████████┛ */
/*▼ 杂项 ████████████████████████████████████████████████████████████████████████████████┓ */
/**
* Returns {@code true} if this map should remove its eldest entry.
* This method is invoked by {@code put} and {@code putAll} after
* inserting a new entry into the map. It provides the implementor
* with the opportunity to remove the eldest entry each time a new one
* is added. This is useful if the map represents a cache: it allows
* the map to reduce memory consumption by deleting stale entries.
*
* <p>Sample use: this override will allow the map to grow up to 100
* entries and then delete the eldest entry each time a new entry is
* added, maintaining a steady state of 100 entries.
* <pre>
* private static final int MAX_ENTRIES = 100;
*
* protected boolean removeEldestEntry(Map.Entry eldest) {
* return size() > MAX_ENTRIES;
* }
* </pre>
*
* <p>This method typically does not modify the map in any way,
* instead allowing the map to modify itself as directed by its
* return value. It <i>is</i> permitted for this method to modify
* the map directly, but if it does so, it <i>must</i> return
* {@code false} (indicating that the map should not attempt any
* further modification). The effects of returning {@code true}
* after modifying the map from within this method are unspecified.
*
* <p>This implementation merely returns {@code false} (so that this
* map acts like a normal map - the eldest element is never removed).
*
* @param eldest The least recently inserted entry in the map, or if
* this is an access-ordered map, the least recently accessed
* entry. This is the entry that will be removed it this
* method returns {@code true}. If the map was empty prior
* to the {@code put} or {@code putAll} invocation resulting
* in this invocation, this will be the entry that was just
* inserted; in other words, if the map contains a single
* entry, the eldest entry is also the newest.
*
* @return {@code true} if the eldest entry should be removed
* from the map; {@code false} if it should be retained.
*/
// 移除LinkedHashMap中最老的结点eldest,返回值代表是否成功移除
protected boolean removeEldestEntry(Map.Entry<K, V> eldest) {
return false;
}
/**
* {@inheritDoc}
*/
// 删除HashMap中所有元素
public void clear() {
super.clear();
head = tail = null;
}
/*▲ 杂项 ████████████████████████████████████████████████████████████████████████████████┛ */
/*▼ LinkedHashMap ████████████████████████████████████████████████████████████████████████████████┓ */
// 创建一个普通Node
Node<K, V> newNode(int hash, K key, V value, Node<K, V> e) {
LinkedHashMap.Entry<K, V> p = new LinkedHashMap.Entry<>(hash, key, value, e);
// 将结点p链接在已有的结点之后,在插入新结点时会用到
linkNodeLast(p);
return p;
}
// 创建一个红黑树的TreeNode
TreeNode<K, V> newTreeNode(int hash, K key, V value, Node<K, V> next) {
TreeNode<K, V> p = new TreeNode<>(hash, key, value, next);
// 将结点p链接在已有的结点之后,在插入新结点时会用到
linkNodeLast(p);
return p;
}
// 从红黑树的TreeNode转换为一个普通Node
Node<K, V> replacementNode(Node<K, V> p, Node<K, V> next) {
LinkedHashMap.Entry<K, V> src = (LinkedHashMap.Entry<K, V>) p;
LinkedHashMap.Entry<K, V> dst = new LinkedHashMap.Entry<>(src.hash, src.key, src.value, next);
// 用dst替换src,在替换结点时候会用到
transferLinks(src, dst);
return dst;
}
// 从普通Node转换为一个红黑树的TreeNode
TreeNode<K, V> replacementTreeNode(Node<K, V> p, Node<K, V> next) {
LinkedHashMap.Entry<K, V> src = (LinkedHashMap.Entry<K, V>) p;
TreeNode<K, V> dst = new TreeNode<>(src.hash, src.key, src.value, next);
// 用dst替换src,在替换结点时候会用到
transferLinks(src, dst);
return dst;
}
// 在插入新结点的同时,移除LinkedHashMap中最老的结点(满足一定条件之后才移除)
void afterNodeInsertion(boolean evict) { // possibly remove eldest
LinkedHashMap.Entry<K, V> first;
if(evict && (first = head) != null && removeEldestEntry(first)) {
K key = first.key;
removeNode(hash(key), key, null, false, true);
}
}
// 从Map中移除结点e之后,也要解除其在链表上的链接
void afterNodeRemoval(Node<K, V> e) { // unlink
LinkedHashMap.Entry<K, V> p = (LinkedHashMap.Entry<K, V>) e, b = p.before, a = p.after;
p.before = p.after = null;
if(b == null) {
head = a;
} else {
b.after = a;
}
if(a == null) {
tail = b;
} else {
a.before = b;
}
}
// 访问结点e之后,如果结点e不在表尾,则会将其移动到表尾(该项功能默认是关闭的,由accessOrder负责开启)
void afterNodeAccess(Node<K, V> e) { // move node to last
LinkedHashMap.Entry<K, V> last;
if(accessOrder && (last = tail) != e) {
LinkedHashMap.Entry<K, V> p = (LinkedHashMap.Entry<K, V>) e, b = p.before, a = p.after;
p.after = null;
if(b == null) {
head = a;
} else {
b.after = a;
}
if(a != null) {
a.before = b;
} else {
last = b;
}
if(last == null) {
head = p;
} else {
p.before = last;
last.after = p;
}
tail = p;
++modCount;
}
}
// 重置当前LinkedHashMap,清空一切参数
void reinitialize() {
super.reinitialize();
head = tail = null;
}
// 用于序列化过程
void internalWriteEntries(java.io.ObjectOutputStream s) throws IOException {
for(LinkedHashMap.Entry<K, V> e = head; e != null; e = e.after) {
s.writeObject(e.key);
s.writeObject(e.value);
}
}
// 将结点p链接在已有的结点之后
private void linkNodeLast(LinkedHashMap.Entry<K, V> p) {
LinkedHashMap.Entry<K, V> last = tail;
tail = p;
if(last == null) {
head = p;
} else {
p.before = last;
last.after = p;
}
}
// 用dst替换src
private void transferLinks(LinkedHashMap.Entry<K, V> src, LinkedHashMap.Entry<K, V> dst) {
LinkedHashMap.Entry<K, V> b = dst.before = src.before;
LinkedHashMap.Entry<K, V> a = dst.after = src.after;
if(b == null) {
head = dst;
} else {
b.after = dst;
}
if(a == null) {
tail = dst;
} else {
a.before = dst;
}
}
/*▲ LinkedHashMap ████████████████████████████████████████████████████████████████████████████████┛ */
/**
* HashMap.Node subclass for normal LinkedHashMap entries.
*/
// LinkedHashMap中的结点信息
static class Entry<K, V> extends HashMap.Node<K, V> {
// 将加入的结点串成一个链表,before指向前一个元素,after指向后一个元素
Entry<K, V> before, after;
Entry(int hash, K key, V value, Node<K, V> next) {
super(hash, key, value, next);
}
}
// LinkedHashMap中key的集合
final class LinkedKeySet extends AbstractSet<K> {
public final int size() {
return size;
}
public final void clear() {
LinkedHashMap.this.clear();
}
public final boolean contains(Object o) {
return containsKey(o);
}
public final boolean remove(Object key) {
return removeNode(hash(key), key, null, false, true) != null;
}
public final Iterator<K> iterator() {
return new LinkedKeyIterator();
}
public final Spliterator<K> spliterator() {
return Spliterators.spliterator(this, Spliterator.SIZED | Spliterator.ORDERED | Spliterator.DISTINCT);
}
public final void forEach(Consumer<? super K> action) {
if(action == null)
throw new NullPointerException();
int mc = modCount;
for(LinkedHashMap.Entry<K, V> e = head; e != null; e = e.after)
action.accept(e.key);
if(modCount != mc)
throw new ConcurrentModificationException();
}
}
// LinkedHashMap中value的集合
final class LinkedValues extends AbstractCollection<V> {
public final int size() {
return size;
}
public final void clear() {
LinkedHashMap.this.clear();
}
public final boolean contains(Object o) {
return containsValue(o);
}
public final Iterator<V> iterator() {
return new LinkedValueIterator();
}
public final Spliterator<V> spliterator() {
return Spliterators.spliterator(this, Spliterator.SIZED | Spliterator.ORDERED);
}
public final void forEach(Consumer<? super V> action) {
if(action == null)
throw new NullPointerException();
int mc = modCount;
for(LinkedHashMap.Entry<K, V> e = head; e != null; e = e.after)
action.accept(e.value);
if(modCount != mc)
throw new ConcurrentModificationException();
}
}
// LinkedHashMap中key-value的集合,Entry的本质就是Node
final class LinkedEntrySet extends AbstractSet<Map.Entry<K, V>> {
public final int size() {
return size;
}
public final void clear() {
LinkedHashMap.this.clear();
}
public final boolean contains(Object o) {
if(!(o instanceof Map.Entry))
return false;
Map.Entry<?, ?> e = (Map.Entry<?, ?>) o;
Object key = e.getKey();
// 根据给定的key和hash(由key计算而来)查找对应的(同位)元素,如果找不到,则返回null
Node<K, V> candidate = getNode(hash(key), key);
return candidate != null && candidate.equals(e);
}
public final boolean remove(Object o) {
if(o instanceof Map.Entry) {
Map.Entry<?, ?> e = (Map.Entry<?, ?>) o;
Object key = e.getKey();
Object value = e.getValue();
return removeNode(hash(key), key, value, true, true) != null;
}
return false;
}
public final Iterator<Map.Entry<K, V>> iterator() {
return new LinkedEntryIterator();
}
public final Spliterator<Map.Entry<K, V>> spliterator() {
return Spliterators.spliterator(this, Spliterator.SIZED | Spliterator.ORDERED | Spliterator.DISTINCT);
}
public final void forEach(Consumer<? super Map.Entry<K, V>> action) {
if(action == null) {
throw new NullPointerException();
}
int mc = modCount;
for(LinkedHashMap.Entry<K, V> e = head; e != null; e = e.after) {
action.accept(e);
}
if(modCount != mc) {
throw new ConcurrentModificationException();
}
}
}
// LinkedHashMap迭代器
abstract class LinkedHashIterator {
LinkedHashMap.Entry<K, V> next;
LinkedHashMap.Entry<K, V> current;
int expectedModCount;
LinkedHashIterator() {
next = head;
expectedModCount = modCount;
current = null;
}
public final boolean hasNext() {
return next != null;
}
final LinkedHashMap.Entry<K, V> nextNode() {
LinkedHashMap.Entry<K, V> e = next;
if(modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
if(e == null) {
throw new NoSuchElementException();
}
current = e;
next = e.after;
return e;
}
public final void remove() {
Node<K, V> p = current;
if(p == null) {
throw new IllegalStateException();
}
if(modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
current = null;
removeNode(p.hash, p.key, null, false, false);
expectedModCount = modCount;
}
}
// key的迭代器
final class LinkedKeyIterator extends LinkedHashIterator implements Iterator<K> {
public final K next() {
return nextNode().getKey();
}
}
// value的迭代器
final class LinkedValueIterator extends LinkedHashIterator implements Iterator<V> {
public final V next() {
return nextNode().value;
}
}
// key-value对的迭代器
final class LinkedEntryIterator extends LinkedHashIterator implements Iterator<Map.Entry<K, V>> {
public final Map.Entry<K, V> next() {
return nextNode();
}
}
}