forked from NaniteFactory/naneat
-
Notifications
You must be signed in to change notification settings - Fork 0
/
visualize.go
610 lines (571 loc) · 21.8 KB
/
visualize.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
/*
MIT License
Copyright (c) 2019 문동선 (NaniteFactory)
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
package naneat
import (
"errors"
"fmt"
"image/color"
"log"
"math"
"math/rand"
"sort"
"github.com/faiface/pixel"
"github.com/faiface/pixel/imdraw"
"github.com/faiface/pixel/text"
"github.com/nanitefactory/visual"
"golang.org/x/image/colornames"
)
// NeuralNetworkActor is a neural network as an actor.
type NeuralNetworkActor interface {
visual.Actor
Self() *NeuralNetworkVisual // Itf to struct.
Bound() pixel.Rect
PosOutNodes() []pixel.Vec
Channel() chan []NeuralNode
}
// NeuralNetworkVisual implements the Actor interface.
// 해당 클래스(NNV)는 채널을 통해 신경원(NeuralNode)들의 값 사본의 리스트를 받아서 그리는 일을 한다.
// 별도의 쓰레드에서 전달되는 값을 매 비주얼라이저 프레임의 시작시에 채널에서 끄집어내어 읽어보고 확인된 변경사항만 다시 그린다.
// NNV의 기본 정의는 그림일 뿐이며 NN그래프를 상속 받지는 않는다. NNV의 인스턴스는 NN그래프에 대한 의존성이 없고 독립적이다.
// 생성시점에서 NN그래프를 한 번 인자로 받고 그 모양을 분석해서 그림을 그리기는 하지만 그렇다고 해서 이 타입의 인스턴스가 해당 객체를 소유하지는 않는다는 이야기다.
// 채널에 대해서는, 채널의 버퍼가 크면 안정적이지만 그에 따라 딜레이 때의 비주얼라이저(NNV)와 공급자(NN-Evaluater) 간의 시간차도 커진다는 점을 염두에 두자.
// 채널의 크기는 단지 1이면 족하다.
type NeuralNetworkVisual struct {
ch chan []NeuralNode // The pump.
// All collections here linear must be in stable sort,
// so that we can access a node by its numeric integer index.
prevNodes []NeuralNode // Nodes copy by value from the previous frame draw(update).
posNodes []pixel.Vec // Positions of nodes that won't change after init.
imdNodes []*imdraw.IMDraw // Nodes drawings. nil imd for an invisible node.
txtNodes []*text.Text // Nodes status displayed for debugging etc. nil for invisibility.
axons [][]axon // Axons of nodes. I hope this is in stable sort.
radiusNode float64
thicknessLink float64 // thicc
bound pixel.Rect // rekt
imdBoundFrame *imdraw.IMDraw // nil when not present.
}
const minAlpha, maxAlpha = 62, math.MaxUint8
// NewNeuralNetworkActor is a constructor.
//
// Arguments recommendation:
// - `16.0` for `radiusNode`.
// - `4.0` for `thicknessLink`.
// - `1.0` strongly recommended for `nSizeBufChan`.
// - `nil` for `posInputNodes`.
// - `nil` for `posOutputNodes`.
//
func NewNeuralNetworkActor(
network *NeuralNetwork, nSizeBufChan int,
bound pixel.Rect, paddingTop, paddingRight, paddingBottom, paddingLeft float64,
radiusNode, thicknessLink float64,
fromRightToLeft, fromTopToBottom, isBoundVisible,
isInputNodeVisible, isHiddenNodeVisible, isOutputNodeVisible, isTxtVisible bool,
posInputNodes, posOutputNodes []pixel.Vec,
) (nna NeuralNetworkActor, err error) {
// func literal
analyzeNodes := func(nodesRaw []*NeuralNode, boundAdjusted pixel.Rect, nLayers int) (
retNodesCopyDeep []NeuralNode, retPosNodes []pixel.Vec, retAxons [][]axon, err error,
) {
// what to return
retNodesCopyDeep = make([]NeuralNode, len(nodesRaw))
retPosNodes = make([]pixel.Vec, len(nodesRaw))
retAxons = make([][]axon, len(nodesRaw))
// iNodes
iNodeOf := map[*NeuralNode]int{} // idx of a raw node
for i, ptrNode := range nodesRaw {
iNodeOf[ptrNode] = i
retNodesCopyDeep[i] = *ptrNode // tie-in
}
// func literal
positionSingleLayer := func(layer []*NeuralNode, iLayer int, posNodesCustom []pixel.Vec) error {
// for nodes
if posNodesCustom == nil {
for j, nodeInLayer := range layer {
// set position of this node in this layer.
var x, y float64 // coords (x, y) of a node.
// x
if fromRightToLeft {
x = boundAdjusted.Max.X - ((float64(boundAdjusted.W()) / float64(nLayers-1)) * float64(iLayer))
} else if !fromRightToLeft {
x = boundAdjusted.Min.X + (float64(boundAdjusted.W())/float64(nLayers-1))*float64(iLayer)
} else {
return errors.New(fmt.Sprint("positionSingleLayer(): critical runtime violation while positioning x of ", nodeInLayer, " in ", iLayer, "th layer"))
}
// y
if len(layer) == 1 {
y = boundAdjusted.Min.Y + (boundAdjusted.H() * rand.Float64())
} else {
if fromTopToBottom {
y = boundAdjusted.Max.Y - ((float64(boundAdjusted.H()) / float64(len(layer)-1)) * float64(j))
} else if !fromTopToBottom {
y = boundAdjusted.Min.Y + (float64(boundAdjusted.H())/float64(len(layer)-1))*float64(j)
} else {
return errors.New(fmt.Sprint("positionSingleLayer(): critical runtime violation while positioning y of ", nodeInLayer, " in ", iLayer, "th layer"))
}
}
// set (x, y) of this node.
retPosNodes[iNodeOf[nodeInLayer]] = pixel.V(x, y)
} // for nodeInLayer
} else if len(posNodesCustom) == len(layer) {
for j, nodeInLayer := range layer {
retPosNodes[iNodeOf[nodeInLayer]] = posNodesCustom[j]
}
} else if len(posNodesCustom) != len(layer) {
return errors.New(fmt.Sprint(
"positionSingleLayer(): ",
"the number of pre-defined positions of nodes does not match to that of this layer of this neural network: ",
"this layer is ", iLayer, "th layer with ", len(layer), " nodes but we have ", len(posNodesCustom), " custom nodes",
))
} else {
return errors.New("positionSingleLayer(): critical runtime violation: something went terribly wrong")
}
// for axons (link)
for _, nodeInLayer := range layer {
// iterate over all axons (link) of our currently selected node, setting their positions.
retAxons[iNodeOf[nodeInLayer]] = []axon{}
toNodes := network.NeuralNodesFrom(nodeInLayer) // I hope it is a stable sort. It must. Otherwise things are screwed up.
for toNodes.Next() {
outNode := toNodes.NeuralNode()
retAxons[iNodeOf[nodeInLayer]] = append(retAxons[iNodeOf[nodeInLayer]],
*newAxon(
network.NeuralEdge(nodeInLayer, outNode),
iNodeOf[outNode],
))
}
}
return nil
} // func literal
{ // Position nodes.
nodesCandidates := make([]*NeuralNode, len(nodesRaw))
if len(nodesRaw) != copy(nodesCandidates, nodesRaw) {
log.Println("failed to copy nodes")
}
sort.Slice(nodesCandidates, func(i, j int) bool {
if nodesCandidates[i].LayerLevel != nodesCandidates[j].LayerLevel {
return nodesCandidates[i].LayerLevel < nodesCandidates[j].LayerLevel
}
return nodesCandidates[i].ID() < nodesCandidates[j].ID() // each layer sort by id
})
{ // 1. inputs
i := sort.Search(len(nodesCandidates), func(i int) bool { return nodesCandidates[i].LayerLevel > 0 })
if err := positionSingleLayer(nodesCandidates[:i], 0, posInputNodes); err != nil {
return nil, nil, nil, err
}
nodesCandidates = nodesCandidates[i:]
}
for iLayer := 1; iLayer < nLayers-1; iLayer++ { // 2. hiddens
i := sort.Search(len(nodesCandidates), func(i int) bool { return nodesCandidates[i].LayerLevel > iLayer })
if err := positionSingleLayer(nodesCandidates[:i], iLayer, nil); err != nil {
return nil, nil, nil, err
}
nodesCandidates = nodesCandidates[i:]
}
{ // 3. outputs
if err := positionSingleLayer(nodesCandidates, nLayers-1, posOutputNodes); err != nil {
return nil, nil, nil, err
}
}
}
return retNodesCopyDeep, retPosNodes, retAxons, nil
} // func literal
// Topo sort.
nodesRaw, err := network.Sort()
if err != nil {
return nil, err
}
// Analyze raw nodes and get postions of all links and nodes.
nodesCopyDeep, newPosNodes, newAxons, err := analyzeNodes(
nodesRaw,
BoundAdjust(bound, paddingTop, paddingRight, paddingBottom, paddingLeft),
network.NLayers(),
)
if err != nil {
return nil, err
}
newImdBoundFrame := func(bound pixel.Rect) *imdraw.IMDraw {
if !isBoundVisible {
return nil
}
imd := imdraw.New(nil)
imd.EndShape = imdraw.RoundEndShape
imd.Push(func(r pixel.Rect) (v1, v2, v3, v4 pixel.Vec) { // vertices of rect
return r.Min, pixel.V(r.Max.X, r.Min.Y), r.Max, pixel.V(r.Min.X, r.Max.Y)
}(bound))
imd.Polygon(2)
return imd
}
// What to return.
nnv := NeuralNetworkVisual{
ch: make(chan []NeuralNode, nSizeBufChan),
prevNodes: nodesCopyDeep,
posNodes: newPosNodes,
imdNodes: make([]*imdraw.IMDraw, len(nodesRaw)),
txtNodes: make([]*text.Text, len(nodesRaw)),
axons: newAxons,
radiusNode: radiusNode,
thicknessLink: thicknessLink,
bound: bound,
imdBoundFrame: newImdBoundFrame(bound),
}
// Fill txt/imds.
dilute, err := Ramp(0).Concentration()
if err != nil {
log.Println("NewNeuralNetworkActor(): cannot convert an invalid neural value to uint8") //
}
for i, node := range nodesRaw {
// links
for j, axon := range nnv.axons[i] {
// imd; primitives drawer
imd := imdraw.New(nil)
imd.EndShape = imdraw.SharpEndShape
imd.Clear()
// draw a line
imd.Color = color.NRGBA{axon.color, 64, 255 - axon.color, minAlpha}
imd.Push(nnv.posNodes[i], nnv.posNodes[axon.to])
imd.Line(thicknessLink)
// save
nnv.axons[i][j].imd = imd
}
// nodes
switch node.TypeInInt() {
case InputNodeBias:
fallthrough
case InputNodeNotBias:
if !isInputNodeVisible {
continue
}
case HiddenNode:
if !isHiddenNodeVisible {
continue
}
case OutputNode:
if !isOutputNodeVisible {
continue
}
case ExceptionalNode:
log.Println("NewNeuralNetwork(): warning: ExceptionalNode node type: ", node)
continue
default:
return nil, errors.New("NewNeuralNetwork(): Unknown node type: " + node.String())
}
// This initialization below is invoked only if this node is set to visible.
{ // node imd
imd := imdraw.New(nil)
imd.Precision = 5
imd.Color = color.NRGBA{dilute, 0, 0, minAlpha}
imd.Push(nnv.posNodes[i])
imd.Circle(nnv.radiusNode, 0)
nnv.imdNodes[i] = imd
}
if isTxtVisible { // node txt
txt := text.New(pixel.ZV, visual.AtlasASCII18())
txt.Color = colornames.Black
pos := nnv.posNodes[i].Add(pixel.V(nnv.radiusNode, nnv.radiusNode))
txt.Orig = pos
txt.Dot = pos
txt.WriteString(fmt.Sprintf("%d: %s: %.2f", node.ID(), node.Name, node.Value))
nnv.txtNodes[i] = txt
}
} // for nodesRaw
return &nnv, nil
}
// Update obligatorily invoked by Visualizer on mainthread.
func (nnv *NeuralNetworkVisual) Update(dt float64) {
select {
case topoSort := <-nnv.ch:
// Tell if this really is a topo sort.
if len(topoSort) != len(nnv.prevNodes) {
log.Println("nnv.Update(): warning: the size of this nodes list read from nnv chan is wrong.") //
return
}
for i, node := range topoSort {
if nnv.prevNodes[i].ID() != node.ID() {
log.Println("nnv.Update(): warning: the order of this nodes list read from nnv chan is wrong.") //
return
}
}
// Now check values of nodes.
isPrince := true // Set to false if this topoSort is revealed to be spoiled one.
for i, node := range topoSort {
// Update this node's txt.
if txt := nnv.txtNodes[i]; txt != nil {
txt.Clear()
// txt.Color = colornames.Black
pos := nnv.posNodes[i].Add(pixel.V(nnv.radiusNode, nnv.radiusNode))
txt.Orig = pos
txt.Dot = pos
txt.WriteString(fmt.Sprintf("%d: %s: %.2f", node.ID(), node.Name, node.Value))
}
// Tell if there is a value change.
nvNew, err := node.Output()
if err != nil {
log.Println("nnv.Update(): warning: invalid neural value: something went terribly wrong: ", err) //
log.Println("nnv.Update(): warning: ", i, "th node ", node, " of our new topo sort was not evaluated well.") //
isPrince = false
continue
}
nvPrev, _ := nnv.prevNodes[i].Output() // The error of this has already been handled. (otherwise it should've been.)
if nvNew == nvPrev {
continue
}
// Notice this is after that (nvNew != nvPrev).
kindNew := nvNew.Kind()
if kindNew == NVKindExceptional {
log.Println("nnv.Update(): warning: invalid neural value: runtime violation: ", kindNew, err) //
isPrince = false
continue
}
strengthNew, err := nvNew.Strength()
if err != nil {
log.Println("nnv.Update(): warning: invalid neural value: runtime violation: ", strengthNew, err) //
isPrince = false
continue
}
// cut low
// if alpha < minAlpha {
// alpha = minAlpha
// }
//
// cut high
// alpha = uint8(math.Min(float64(int(alpha)+minAlpha), 0xFF))
//
// adjust range
const percent = float64(float64(maxAlpha-minAlpha) / float64(maxAlpha))
alpha := uint8((float64(strengthNew) * percent) + minAlpha)
// alpha := uint8((float64(strengthNew*4) * percent) + minAlpha)
// Update this node.
if imd := nnv.imdNodes[i]; imd != nil {
dilute, err := nvNew.Concentration()
if err != nil {
log.Println("nnv.Update(): warning: invalid neural value: runtime violation: ", dilute, err) //
isPrince = false
continue
}
// if float64(strengthNew) >= math.Abs(float64(NeuralValueMax))/4 ||
// float64(strengthNew) >= math.Abs(float64(NeuralValueMin))/4 {
// alpha = uint8(math.MaxUint8)
// }
imd.Clear()
imd.Precision = 5
imd.Color = color.NRGBA{dilute, 0, 0, alpha}
imd.Push(nnv.posNodes[i])
imd.Circle(nnv.radiusNode, 0)
}
// Update this node's axons. (links)
for _, axon := range nnv.axons[i] {
// imd update
imd := axon.imd
imd.Clear()
// draw a line
imd.Color = color.NRGBA{axon.color, 64, 255 - axon.color, alpha}
imd.Push(nnv.posNodes[i], nnv.posNodes[axon.to])
imd.Line(nnv.thicknessLink)
} // for axons
} // for range topoSort
// Succeed the throne.
if isPrince {
nnv.prevNodes = topoSort
}
default:
return
}
} // func
// Draw obligatorily invoked by Visualizer on mainthread.
func (nnv *NeuralNetworkVisual) Draw(t pixel.Target) {
if imd := nnv.imdBoundFrame; imd != nil {
imd.Draw(t)
}
for iNode := range nnv.prevNodes {
if imd := nnv.imdNodes[iNode]; imd != nil {
imd.Draw(t)
}
if txt := nnv.txtNodes[iNode]; txt != nil {
txt.Draw(t, pixel.IM)
}
for _, axon := range nnv.axons[iNode] {
axon.imd.Draw(t) // These imds are never set to nil.
}
}
}
// ----------------------------------------------------------------------------
// Self of this returns itself as a struct.
func (nnv *NeuralNetworkVisual) Self() *NeuralNetworkVisual {
return nnv
}
// Bound returns the bound of this. You get the size and its offset as well.
func (nnv *NeuralNetworkVisual) Bound() pixel.Rect {
return nnv.bound
}
// PosOutNodes returns positions vectors of all output nodes.
func (nnv *NeuralNetworkVisual) PosOutNodes() []pixel.Vec {
// get the first outNode index
iBaseOutNodes := -1
for i, node := range nnv.prevNodes {
if node.TypeInInt() == OutputNode {
iBaseOutNodes = i
break
}
}
if iBaseOutNodes == -1 {
panic("cannot find any output node")
}
// get indice from there
type refOutNode struct {
index int
id int64
}
indiceOutNodes := []refOutNode{}
for i, node := range nnv.prevNodes[iBaseOutNodes:] {
if node.TypeInInt() == OutputNode {
indiceOutNodes = append(indiceOutNodes, refOutNode{iBaseOutNodes + i, node.ID()})
}
}
sort.Slice(indiceOutNodes, func(i, j int) bool {
return indiceOutNodes[i].id < indiceOutNodes[j].id
})
// get positions from refs(indice)
ret := []pixel.Vec{}
for _, outNodeRef := range indiceOutNodes {
ret = append(ret, nnv.posNodes[outNodeRef.index])
}
return ret
}
// Channel returns the channel this actor gets all the data from.
func (nnv *NeuralNetworkVisual) Channel() chan []NeuralNode {
return nnv.ch
}
// ----------------------------------------------------------------------------
type axon struct {
imd *imdraw.IMDraw // The only thing in this struct that can vary. This is never set to nil.
color uint8 // Color concentration in diluteness.
to int // Idx of this axon's to node (out-node) in our nnv list.
}
func newAxon(neuralEdge *NeuralEdge, idxOutNode int) *axon {
// get color
const positiveMaxNeuralValue = float64(NeuralValueMax)
dilute, err := Ramp(NeuralValue(
positiveMaxNeuralValue * neuralEdge.Weight(),
)).Concentration()
if err != nil {
panic(err)
}
// return
return &axon{
imd: nil,
color: dilute,
to: idxOutNode,
}
}
// ----------------------------------------------------------------------------
// BoundAdjust returns the border without (inside) padding.
func BoundAdjust(
bound pixel.Rect,
paddingTop, paddingRight,
paddingBottom, paddingLeft float64,
) pixel.Rect {
boundAdjusted := bound
boundAdjusted.Max.X -= paddingRight
boundAdjusted.Max.Y -= paddingTop
boundAdjusted.Min.X += paddingLeft
boundAdjusted.Min.Y += paddingBottom
return boundAdjusted
}
// PosPixelsOf returns all the positions of all pixels in a given rectangular bound, aligned in a linear order.
// This could be useful for positioning the input nodes of the neural network actor.
func PosPixelsOf(bound pixel.Rect, fromLeftToRight, fromTopToBottom bool) []pixel.Vec {
width := int(bound.W())
height := int(bound.H())
base := bound.Min // Base what's prior to the offset.
ret := make([]pixel.Vec, width*height)
var thunk func(irow, icol int)
if fromLeftToRight && fromTopToBottom {
plus := base.Add(pixel.V(0.5, -0.5))
thunk = func(irow, icol int) {
ret[(irow*width)+icol] = plus.Add(pixel.V(float64(icol), float64(height-irow)))
}
} else if fromLeftToRight && !fromTopToBottom {
plus := base.Add(pixel.V(0.5, 0.5))
thunk = func(irow, icol int) {
ret[(irow*width)+icol] = plus.Add(pixel.V(float64(icol), float64(irow)))
}
} else if !fromLeftToRight && fromTopToBottom {
plus := base.Add(pixel.V(-0.5, -0.5))
thunk = func(irow, icol int) {
ret[(irow*width)+icol] = plus.Add(pixel.V(float64(width-icol), float64(height-irow)))
}
} else if !fromLeftToRight && !fromTopToBottom {
plus := base.Add(pixel.V(-0.5, 0.5))
thunk = func(irow, icol int) {
ret[(irow*width)+icol] = plus.Add(pixel.V(float64(width-icol), float64(irow)))
}
} else {
panic("PosPixelsOf(): runtime violation in its arguments")
}
// Include lower bound, exclude upper bound for integer indices.
// +-0.5 pointing to the pixel center.
for irow := 0; irow < height; irow++ {
for icol := 0; icol < width; icol++ {
thunk(irow, icol)
}
}
return ret
}
// PosBoxesOf returns all the positions of all boxes in a given rectangular bound, aligned in a linear order.
// This could be useful for positioning the input nodes of the neural network actor.
// Args `widthBox` and `heightBox` should be exact otherwise outbound-errors.
func PosBoxesOf(bound pixel.Rect, fromLeftToRight, fromTopToBottom bool, widthBox, heightBox float64) []pixel.Vec {
width := bound.W()
height := bound.H()
base := bound.Min // Base what's prior to the offset.
ret := make([]pixel.Vec, int(width/widthBox)*int(height/heightBox))
var thunk func(y, x float64)
if fromLeftToRight && fromTopToBottom {
plus := base.Add(pixel.V(0.5*widthBox, -0.5*heightBox))
thunk = func(y, x float64) {
ret[int((y/heightBox)*(width/widthBox))+int(x/widthBox)] = plus.Add(pixel.V(x, float64(height-y)))
}
} else if fromLeftToRight && !fromTopToBottom {
plus := base.Add(pixel.V(0.5*widthBox, 0.5*heightBox))
thunk = func(y, x float64) {
ret[int((y/heightBox)*(width/widthBox))+int(x/widthBox)] = plus.Add(pixel.V(x, y))
}
} else if !fromLeftToRight && fromTopToBottom {
plus := base.Add(pixel.V(-0.5*widthBox, -0.5*heightBox))
thunk = func(y, x float64) {
ret[int((y/heightBox)*(width/widthBox))+int(x/widthBox)] = plus.Add(pixel.V(float64(width-x), float64(height-y)))
}
} else if !fromLeftToRight && !fromTopToBottom {
plus := base.Add(pixel.V(-0.5*widthBox, 0.5*heightBox))
thunk = func(y, x float64) {
ret[int((y/heightBox)*(width/widthBox))+int(x/widthBox)] = plus.Add(pixel.V(float64(width-x), y))
}
} else {
panic("PosPixelsOf(): runtime violation in its arguments")
}
// Include lower bound, exclude upper bound for integer indices.
// +-0.5*widthBox or +-0.5*heightBox pointing to the box center.
for y := 0.0; y < height; y += heightBox {
for x := 0.0; x < width; x += widthBox {
// log.Println(width, height, width/widthBox, height/heightBox, int(width/widthBox)*int(height/heightBox), y, x, (y / heightBox), (x / widthBox)) //
thunk(y, x)
}
}
return ret
}