Skip to content

Latest commit

 

History

History
55 lines (55 loc) · 2.15 KB

2022-06-28-zeng22a.md

File metadata and controls

55 lines (55 loc) · 2.15 KB
abstract booktitle title year layout series publisher issn id month tex_title firstpage lastpage page order cycles bibtex_author author date address container-title volume genre issued pdf extras
Discovery of causal relationships from observational data, especially from mixed data that consist of both continuous and discrete variables, is a fundamental yet challenging problem. Traditional methods focus on polishing the data type processing policy, which may lose data information. Compared with such methods, the constraint-based and score-based methods for mixed data derive certain conditional independence tests or score functions from the data’s characteristics. However, they may return the Markov equivalence class due to the lack of identifiability guarantees, which may limit their applicability or hinder their interpretability of causal graphs. Thus, in this paper, based on the structural causal models of continuous and discrete variables, we provide sufficient identifiability conditions in bivariate as well as multivariate cases. We show that if the data follow our proposed restricted Linear Mixed causal model (LiM), such a model is identifiable. In addition, we proposed a two-step hybrid method to discover the causal structure for mixed data. Experiments on both synthetic and real-world data empirically demonstrate the identifiability and efficacy of our proposed LiM model.
First Conference on Causal Learning and Reasoning
Causal Discovery for Linear Mixed Data
2022
inproceedings
Proceedings of Machine Learning Research
PMLR
2640-3498
zeng22a
0
Causal Discovery for Linear Mixed Data
994
1009
994-1009
994
false
Zeng, Yan and Shimizu, Shohei and Matsui, Hidetoshi and Sun, Fuchun
given family
Yan
Zeng
given family
Shohei
Shimizu
given family
Hidetoshi
Matsui
given family
Fuchun
Sun
2022-06-28
Proceedings of the First Conference on Causal Learning and Reasoning
177
inproceedings
date-parts
2022
6
28