本文介绍一款基于新一代 Kaldi
的、超级容易安装的、实时
语音识别
Python
包:sherpa-ncnn。
小编注: 它有可能是目前为止,
最容易
安装的实时语音识 别Python
包(谁试谁知道
)。 它的使用方法也是极简单的。
pip install sherpa-ncnn
对的,就是这一句,所有的依赖都从源码安装。
其实目前 sherpa-ncnn
只有下面 3
个依赖:
- ncnn , 用于神经网络计算
- kaldi-native-fbank , 用于计算
fbank
特征 - pybind11 , 用于
C++
和Python
之间的交互
小编注:如果要使用麦克风,
sherpa-ncnn
还依赖portaudio
(C++
) 和sounddevice
(Python
)。
更多安装方法,请参考文档:
https://k2-fsa.github.io/sherpa/ncnn/python/index.html
下面这个视频,展示了使用 sherpa-ncnn
的 Python API
进行实时语音识别的效果。
用到的代码,作为本文的附录,附于文末。
视频链接如下:
https://www.bilibili.com/video/BV1eK411y788/
小编注:如果你对
endpoint detection
感兴趣,请参考sherpa-ncnn
的文档:
小编注:视频中用到的模型也是开源的。请见
本文介绍了可能是目前为止,最容易安装的 实时语音识别
Python
包。
接下来的工作,是给识别结果加上时间戳。如果你对语音识别感兴趣,请给我们提
pull-request
。
小编注:感谢
https://github.com/pingfengluo
在
中贡献了
endpointing
和modified_beam_search
。
为了方便大家阅读,我们把
https://github.com/k2-fsa/sherpa-ncnn/tree/master/python-api-examples
中的 speech-recognition-from-microphone-with-endpoint-detection.py
做为附录,供大家阅读。
使用 sherpa-ncnn
的 Python API
进行实时语音识别的代码如下。
代码的详细解释,请参考文档:
https://k2-fsa.github.io/sherpa/ncnn/python/index.html#real-time-recognition-with-a-microphone
#!/usr/bin/env python3
# Real-time speech recognition from a microphone using sherpa-ncnn Python API
# with endpoint detection.
#
# Please refer to
# https://k2-fsa.github.io/sherpa/ncnn/pretrained_models/index.html
# to download pre-trained models
import sys
try:
import sounddevice as sd
except ImportError as e:
print("Please install sounddevice first. You can use")
print()
print(" pip install sounddevice")
print()
print("to install it")
sys.exit(-1)
import sherpa_ncnn
def create_recognizer():
# Please replace the model files if needed.
# See https://k2-fsa.github.io/sherpa/ncnn/pretrained_models/index.html
# for download links.
recognizer = sherpa_ncnn.Recognizer(
tokens="./sherpa-ncnn-conv-emformer-transducer-2022-12-06/tokens.txt",
encoder_param="./sherpa-ncnn-conv-emformer-transducer-2022-12-06/encoder_jit_trace-pnnx.ncnn.param",
encoder_bin="./sherpa-ncnn-conv-emformer-transducer-2022-12-06/encoder_jit_trace-pnnx.ncnn.bin",
decoder_param="./sherpa-ncnn-conv-emformer-transducer-2022-12-06/decoder_jit_trace-pnnx.ncnn.param",
decoder_bin="./sherpa-ncnn-conv-emformer-transducer-2022-12-06/decoder_jit_trace-pnnx.ncnn.bin",
joiner_param="./sherpa-ncnn-conv-emformer-transducer-2022-12-06/joiner_jit_trace-pnnx.ncnn.param",
joiner_bin="./sherpa-ncnn-conv-emformer-transducer-2022-12-06/joiner_jit_trace-pnnx.ncnn.bin",
num_threads=4,
decoding_method="modified_beam_search",
enable_endpoint_detection=True,
rule1_min_trailing_silence=2.4,
rule2_min_trailing_silence=1.2,
rule3_min_utterance_length=300,
)
return recognizer
def main():
print("Started! Please speak")
recognizer = create_recognizer()
sample_rate = recognizer.sample_rate
samples_per_read = int(0.1 * sample_rate) # 0.1 second = 100 ms
last_result = ""
segment_id = 0
with sd.InputStream(channels=1, dtype="float32", samplerate=sample_rate) as s:
while True:
samples, _ = s.read(samples_per_read) # a blocking read
samples = samples.reshape(-1)
recognizer.accept_waveform(sample_rate, samples)
is_endpoint = recognizer.is_endpoint
result = recognizer.text
if result and (last_result != result):
last_result = result
print(f"{segment_id}: {result}")
if result and is_endpoint:
segment_id += 1
if __name__ == "__main__":
devices = sd.query_devices()
print(devices)
default_input_device_idx = sd.default.device[0]
print(f'Use default device: {devices[default_input_device_idx]["name"]}')
try:
main()
except KeyboardInterrupt:
print("\nCaught Ctrl + C. Exiting")