forked from perftool-incubator/bench-trafficgen
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcollapse-buckets.py
149 lines (125 loc) · 5.26 KB
/
collapse-buckets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
#!/bin/python3
import csv
import sys
import pandas as pd
collapse=1000 # ns (1 usec)
clist=[]
def max_latency(csv_file):
with open(csv_file, "r") as csv_obj:
csv_data = csv.reader(csv_obj)
max_latency = max(csv_data, key=lambda val: int(val[0]))
return round(int(max_latency[0])/collapse)
def min_latency(csv_file):
with open(csv_file, "r") as csv_obj:
csv_data = csv.reader(csv_obj)
min_latency = min(csv_data, key=lambda val: int(val[0]))
return round(int(min_latency[0])/collapse)
def sum_samples(csv_file):
sum_samples=0
with open(csv_file, "r") as csv_obj:
csv_data = csv.reader(csv_obj)
for row in csv_data:
sum_samples += int(row[1])
return sum_samples
def init_collapsed_list(csv_file):
global clist
# pre-populate collapsed latencies list w/ count=0
clist = [[0] * 2] * (max_latency(csv_file)+1)
for i in range(0, len(clist)):
clist[i] = [i, 0]
def collapse_buckets(csv_file):
global clist
total_samples=0
# collapse latency ranges e.g. 1001, 1500, 1999 ns --> 2 us
with open(csv_file, "r") as csv_obj:
csv_data = csv.reader(csv_obj)
for row in csv_data:
latency_usec = round(int(row[0])/collapse)
sample_count = int(row[1])
clist[latency_usec][1] += sample_count
total_samples += sample_count
return total_samples
def bucket_size_stats():
global clist
# smallest and largest buckets
# list with one or more elements of the same sample count
largest=[[0,0]] # [latency_bucket,samples]
smallest=[[0,0]] # [latency_bucket,samples]
for bucket in range(0, len(clist)):
# no sample for this bucket, skip it
if clist[bucket][1] == 0:
continue
# update largest (replace larger or append equal)
if largest[0][1] == 0 or clist[bucket][1] > largest[0][1]:
largest[0] = clist[bucket]
elif clist[bucket][1] == largest[0][1]:
largest.append(clist[bucket])
# update smallest (replace smaller or append equal)
if smallest[0][1] == 0 or clist[bucket][1] < smallest[0][1]:
smallest[0] = clist[bucket]
elif clist[bucket][1] == smallest[0][1]:
smallest.append(clist[bucket])
return largest,smallest
def bucket_minmax_samples():
global clist
for i in range(0, len(clist)):
if clist[i][1] > 0:
min_samples=i
break
max_samples=clist[-1][1]
return min_samples, max_samples
def print_summary(csv_file, hist_file, total_samples):
largest, smallest = bucket_size_stats()
min_samples, max_samples = bucket_minmax_samples()
summary = (
f"\nCSV information summary:"
f"\nInput CSV file...................................: { csv_file }."
f"\nSum of samples count.............................: { sum_samples(csv_file) } samples."
f"\nMax latency......................................: { max_latency(csv_file) } usec w/ { max_samples } samples."
f"\nMin latency......................................: { min_latency(csv_file) } usec w/ { min_samples } samples."
f"\nTotal of samples collapsed.......................: { total_samples } samples."
f"\nCollapsing range.................................: { collapse } ns."
f"\nLargest bucket(s) [latency,samples]..............: { largest } ({ len(largest) } buckets)."
f"\nSmallest bucket(s) [latency,samples].............: { smallest } ({ len(smallest) } buckets)."
f"\nCollapsed CSV file...............................: { hist_file }."
f"\nCollapsed buckets [latency, samples].............: { clist }"
)
print(summary)
def write_collapsed_data_file(hist_file):
# write to new csv file collapsed data
with open(hist_file, "w") as csv_obj:
hist_data = csv.writer(csv_obj)
hist_data.writerow(["Latency", "Samples"])
hist_data.writerows(clist)
def merge(collapsed_files):
f = collapsed_files.pop()
merged_data = pd.read_csv(f)
while len(collapsed_files) > 0:
f = collapsed_files.pop()
collapsed_data = pd.read_csv(f)
merged_data = pd.merge(merged_data, collapsed_data, on='Latency', how='outer')
samples_columns = merged_data.filter(like='Samples_')
merged_data['Samples'] = samples_columns.sum(axis=1)
merged_data['Samples'] = merged_data['Samples'].astype('Int64')
merged_data = merged_data.drop(samples_columns, axis=1)
total_samples = merged_data.Samples.sum()
merged_data['Percentile'] = (merged_data.Samples.cumsum() / total_samples) * 100
merged_data.to_csv('merged-buckets.csv', index=False)
print(f"\n'merged-buckets.csv' has been created!")
def main():
csv_args=sys.argv
if len(csv_args) == 0:
exit(1)
collapsed_files=[]
for csv in range(1, len(csv_args)):
csv_file = csv_args[csv]
hist_file = f"collapsed-{csv_file}"
init_collapsed_list(csv_file)
total_samples = collapse_buckets(csv_file)
write_collapsed_data_file(hist_file)
print_summary(csv_file, hist_file, total_samples)
collapsed_files.append(hist_file)
if len(collapsed_files) > 1:
merge(collapsed_files)
if __name__ == "__main__":
exit(main())