forked from aosp-mirror/platform_external_jpeg
-
Notifications
You must be signed in to change notification settings - Fork 11
/
jccoefct.c
449 lines (405 loc) · 16 KB
/
jccoefct.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
/*
* jccoefct.c
*
* Copyright (C) 1994-1997, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains the coefficient buffer controller for compression.
* This controller is the top level of the JPEG compressor proper.
* The coefficient buffer lies between forward-DCT and entropy encoding steps.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
/* We use a full-image coefficient buffer when doing Huffman optimization,
* and also for writing multiple-scan JPEG files. In all cases, the DCT
* step is run during the first pass, and subsequent passes need only read
* the buffered coefficients.
*/
#ifdef ENTROPY_OPT_SUPPORTED
#define FULL_COEF_BUFFER_SUPPORTED
#else
#ifdef C_MULTISCAN_FILES_SUPPORTED
#define FULL_COEF_BUFFER_SUPPORTED
#endif
#endif
/* Private buffer controller object */
typedef struct {
struct jpeg_c_coef_controller pub; /* public fields */
JDIMENSION iMCU_row_num; /* iMCU row # within image */
JDIMENSION mcu_ctr; /* counts MCUs processed in current row */
int MCU_vert_offset; /* counts MCU rows within iMCU row */
int MCU_rows_per_iMCU_row; /* number of such rows needed */
/* For single-pass compression, it's sufficient to buffer just one MCU
* (although this may prove a bit slow in practice). We allocate a
* workspace of C_MAX_BLOCKS_IN_MCU coefficient blocks, and reuse it for each
* MCU constructed and sent. (On 80x86, the workspace is FAR even though
* it's not really very big; this is to keep the module interfaces unchanged
* when a large coefficient buffer is necessary.)
* In multi-pass modes, this array points to the current MCU's blocks
* within the virtual arrays.
*/
JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU];
/* In multi-pass modes, we need a virtual block array for each component. */
jvirt_barray_ptr whole_image[MAX_COMPONENTS];
} my_coef_controller;
typedef my_coef_controller * my_coef_ptr;
/* Forward declarations */
METHODDEF(boolean) compress_data
JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
#ifdef FULL_COEF_BUFFER_SUPPORTED
METHODDEF(boolean) compress_first_pass
JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
METHODDEF(boolean) compress_output
JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
#endif
LOCAL(void)
start_iMCU_row (j_compress_ptr cinfo)
/* Reset within-iMCU-row counters for a new row */
{
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
/* In an interleaved scan, an MCU row is the same as an iMCU row.
* In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
* But at the bottom of the image, process only what's left.
*/
if (cinfo->comps_in_scan > 1) {
coef->MCU_rows_per_iMCU_row = 1;
} else {
if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1))
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
else
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
}
coef->mcu_ctr = 0;
coef->MCU_vert_offset = 0;
}
/*
* Initialize for a processing pass.
*/
METHODDEF(void)
start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
{
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
coef->iMCU_row_num = 0;
start_iMCU_row(cinfo);
switch (pass_mode) {
case JBUF_PASS_THRU:
if (coef->whole_image[0] != NULL)
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
coef->pub.compress_data = compress_data;
break;
#ifdef FULL_COEF_BUFFER_SUPPORTED
case JBUF_SAVE_AND_PASS:
if (coef->whole_image[0] == NULL)
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
coef->pub.compress_data = compress_first_pass;
break;
case JBUF_CRANK_DEST:
if (coef->whole_image[0] == NULL)
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
coef->pub.compress_data = compress_output;
break;
#endif
default:
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
break;
}
}
/*
* Process some data in the single-pass case.
* We process the equivalent of one fully interleaved MCU row ("iMCU" row)
* per call, ie, v_samp_factor block rows for each component in the image.
* Returns TRUE if the iMCU row is completed, FALSE if suspended.
*
* NB: input_buf contains a plane for each component in image,
* which we index according to the component's SOF position.
*/
METHODDEF(boolean)
compress_data (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
{
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
JDIMENSION MCU_col_num; /* index of current MCU within row */
JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
int blkn, bi, ci, yindex, yoffset, blockcnt;
JDIMENSION ypos, xpos;
jpeg_component_info *compptr;
/* Loop to write as much as one whole iMCU row */
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
yoffset++) {
for (MCU_col_num = coef->mcu_ctr; MCU_col_num <= last_MCU_col;
MCU_col_num++) {
/* Determine where data comes from in input_buf and do the DCT thing.
* Each call on forward_DCT processes a horizontal row of DCT blocks
* as wide as an MCU; we rely on having allocated the MCU_buffer[] blocks
* sequentially. Dummy blocks at the right or bottom edge are filled in
* specially. The data in them does not matter for image reconstruction,
* so we fill them with values that will encode to the smallest amount of
* data, viz: all zeroes in the AC entries, DC entries equal to previous
* block's DC value. (Thanks to Thomas Kinsman for this idea.)
*/
blkn = 0;
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
compptr = cinfo->cur_comp_info[ci];
blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
: compptr->last_col_width;
xpos = MCU_col_num * compptr->MCU_sample_width;
ypos = yoffset * DCTSIZE; /* ypos == (yoffset+yindex) * DCTSIZE */
for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
if (coef->iMCU_row_num < last_iMCU_row ||
yoffset+yindex < compptr->last_row_height) {
(*cinfo->fdct->forward_DCT) (cinfo, compptr,
input_buf[compptr->component_index],
coef->MCU_buffer[blkn],
ypos, xpos, (JDIMENSION) blockcnt);
if (blockcnt < compptr->MCU_width) {
/* Create some dummy blocks at the right edge of the image. */
jzero_far((void FAR *) coef->MCU_buffer[blkn + blockcnt],
(compptr->MCU_width - blockcnt) * SIZEOF(JBLOCK));
for (bi = blockcnt; bi < compptr->MCU_width; bi++) {
coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn+bi-1][0][0];
}
}
} else {
/* Create a row of dummy blocks at the bottom of the image. */
jzero_far((void FAR *) coef->MCU_buffer[blkn],
compptr->MCU_width * SIZEOF(JBLOCK));
for (bi = 0; bi < compptr->MCU_width; bi++) {
coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn-1][0][0];
}
}
blkn += compptr->MCU_width;
ypos += DCTSIZE;
}
}
/* Try to write the MCU. In event of a suspension failure, we will
* re-DCT the MCU on restart (a bit inefficient, could be fixed...)
*/
if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) {
/* Suspension forced; update state counters and exit */
coef->MCU_vert_offset = yoffset;
coef->mcu_ctr = MCU_col_num;
return FALSE;
}
}
/* Completed an MCU row, but perhaps not an iMCU row */
coef->mcu_ctr = 0;
}
/* Completed the iMCU row, advance counters for next one */
coef->iMCU_row_num++;
start_iMCU_row(cinfo);
return TRUE;
}
#ifdef FULL_COEF_BUFFER_SUPPORTED
/*
* Process some data in the first pass of a multi-pass case.
* We process the equivalent of one fully interleaved MCU row ("iMCU" row)
* per call, ie, v_samp_factor block rows for each component in the image.
* This amount of data is read from the source buffer, DCT'd and quantized,
* and saved into the virtual arrays. We also generate suitable dummy blocks
* as needed at the right and lower edges. (The dummy blocks are constructed
* in the virtual arrays, which have been padded appropriately.) This makes
* it possible for subsequent passes not to worry about real vs. dummy blocks.
*
* We must also emit the data to the entropy encoder. This is conveniently
* done by calling compress_output() after we've loaded the current strip
* of the virtual arrays.
*
* NB: input_buf contains a plane for each component in image. All
* components are DCT'd and loaded into the virtual arrays in this pass.
* However, it may be that only a subset of the components are emitted to
* the entropy encoder during this first pass; be careful about looking
* at the scan-dependent variables (MCU dimensions, etc).
*/
METHODDEF(boolean)
compress_first_pass (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
{
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
JDIMENSION blocks_across, MCUs_across, MCUindex;
int bi, ci, h_samp_factor, block_row, block_rows, ndummy;
JCOEF lastDC;
jpeg_component_info *compptr;
JBLOCKARRAY buffer;
JBLOCKROW thisblockrow, lastblockrow;
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
/* Align the virtual buffer for this component. */
buffer = (*cinfo->mem->access_virt_barray)
((j_common_ptr) cinfo, coef->whole_image[ci],
coef->iMCU_row_num * compptr->v_samp_factor,
(JDIMENSION) compptr->v_samp_factor, TRUE);
/* Count non-dummy DCT block rows in this iMCU row. */
if (coef->iMCU_row_num < last_iMCU_row)
block_rows = compptr->v_samp_factor;
else {
/* NB: can't use last_row_height here, since may not be set! */
block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
if (block_rows == 0) block_rows = compptr->v_samp_factor;
}
blocks_across = compptr->width_in_blocks;
h_samp_factor = compptr->h_samp_factor;
/* Count number of dummy blocks to be added at the right margin. */
ndummy = (int) (blocks_across % h_samp_factor);
if (ndummy > 0)
ndummy = h_samp_factor - ndummy;
/* Perform DCT for all non-dummy blocks in this iMCU row. Each call
* on forward_DCT processes a complete horizontal row of DCT blocks.
*/
for (block_row = 0; block_row < block_rows; block_row++) {
thisblockrow = buffer[block_row];
(*cinfo->fdct->forward_DCT) (cinfo, compptr,
input_buf[ci], thisblockrow,
(JDIMENSION) (block_row * DCTSIZE),
(JDIMENSION) 0, blocks_across);
if (ndummy > 0) {
/* Create dummy blocks at the right edge of the image. */
thisblockrow += blocks_across; /* => first dummy block */
jzero_far((void FAR *) thisblockrow, ndummy * SIZEOF(JBLOCK));
lastDC = thisblockrow[-1][0];
for (bi = 0; bi < ndummy; bi++) {
thisblockrow[bi][0] = lastDC;
}
}
}
/* If at end of image, create dummy block rows as needed.
* The tricky part here is that within each MCU, we want the DC values
* of the dummy blocks to match the last real block's DC value.
* This squeezes a few more bytes out of the resulting file...
*/
if (coef->iMCU_row_num == last_iMCU_row) {
blocks_across += ndummy; /* include lower right corner */
MCUs_across = blocks_across / h_samp_factor;
for (block_row = block_rows; block_row < compptr->v_samp_factor;
block_row++) {
thisblockrow = buffer[block_row];
lastblockrow = buffer[block_row-1];
jzero_far((void FAR *) thisblockrow,
(size_t) (blocks_across * SIZEOF(JBLOCK)));
for (MCUindex = 0; MCUindex < MCUs_across; MCUindex++) {
lastDC = lastblockrow[h_samp_factor-1][0];
for (bi = 0; bi < h_samp_factor; bi++) {
thisblockrow[bi][0] = lastDC;
}
thisblockrow += h_samp_factor; /* advance to next MCU in row */
lastblockrow += h_samp_factor;
}
}
}
}
/* NB: compress_output will increment iMCU_row_num if successful.
* A suspension return will result in redoing all the work above next time.
*/
/* Emit data to the entropy encoder, sharing code with subsequent passes */
return compress_output(cinfo, input_buf);
}
/*
* Process some data in subsequent passes of a multi-pass case.
* We process the equivalent of one fully interleaved MCU row ("iMCU" row)
* per call, ie, v_samp_factor block rows for each component in the scan.
* The data is obtained from the virtual arrays and fed to the entropy coder.
* Returns TRUE if the iMCU row is completed, FALSE if suspended.
*
* NB: input_buf is ignored; it is likely to be a NULL pointer.
*/
METHODDEF(boolean)
compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
{
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
JDIMENSION MCU_col_num; /* index of current MCU within row */
int blkn, ci, xindex, yindex, yoffset;
JDIMENSION start_col;
JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
JBLOCKROW buffer_ptr;
jpeg_component_info *compptr;
/* Align the virtual buffers for the components used in this scan.
* NB: during first pass, this is safe only because the buffers will
* already be aligned properly, so jmemmgr.c won't need to do any I/O.
*/
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
compptr = cinfo->cur_comp_info[ci];
buffer[ci] = (*cinfo->mem->access_virt_barray)
((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
coef->iMCU_row_num * compptr->v_samp_factor,
(JDIMENSION) compptr->v_samp_factor, FALSE);
}
/* Loop to process one whole iMCU row */
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
yoffset++) {
for (MCU_col_num = coef->mcu_ctr; MCU_col_num < cinfo->MCUs_per_row;
MCU_col_num++) {
/* Construct list of pointers to DCT blocks belonging to this MCU */
blkn = 0; /* index of current DCT block within MCU */
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
compptr = cinfo->cur_comp_info[ci];
start_col = MCU_col_num * compptr->MCU_width;
for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
coef->MCU_buffer[blkn++] = buffer_ptr++;
}
}
}
/* Try to write the MCU. */
if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) {
/* Suspension forced; update state counters and exit */
coef->MCU_vert_offset = yoffset;
coef->mcu_ctr = MCU_col_num;
return FALSE;
}
}
/* Completed an MCU row, but perhaps not an iMCU row */
coef->mcu_ctr = 0;
}
/* Completed the iMCU row, advance counters for next one */
coef->iMCU_row_num++;
start_iMCU_row(cinfo);
return TRUE;
}
#endif /* FULL_COEF_BUFFER_SUPPORTED */
/*
* Initialize coefficient buffer controller.
*/
GLOBAL(void)
jinit_c_coef_controller (j_compress_ptr cinfo, boolean need_full_buffer)
{
my_coef_ptr coef;
coef = (my_coef_ptr)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF(my_coef_controller));
cinfo->coef = (struct jpeg_c_coef_controller *) coef;
coef->pub.start_pass = start_pass_coef;
/* Create the coefficient buffer. */
if (need_full_buffer) {
#ifdef FULL_COEF_BUFFER_SUPPORTED
/* Allocate a full-image virtual array for each component, */
/* padded to a multiple of samp_factor DCT blocks in each direction. */
int ci;
jpeg_component_info *compptr;
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE,
(JDIMENSION) jround_up((long) compptr->width_in_blocks,
(long) compptr->h_samp_factor),
(JDIMENSION) jround_up((long) compptr->height_in_blocks,
(long) compptr->v_samp_factor),
(JDIMENSION) compptr->v_samp_factor);
}
#else
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
#endif
} else {
/* We only need a single-MCU buffer. */
JBLOCKROW buffer;
int i;
buffer = (JBLOCKROW)
(*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
for (i = 0; i < C_MAX_BLOCKS_IN_MCU; i++) {
coef->MCU_buffer[i] = buffer + i;
}
coef->whole_image[0] = NULL; /* flag for no virtual arrays */
}
}