-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsketch.js
105 lines (86 loc) · 2.38 KB
/
sketch.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
let classifier;
let video;
let bgCol = 0;
let button;
let t;
let output = "";
function setup() {
createCanvas(640,600);
if (isMobileDevice()) {
console.log("mobile device");
var constraints = {
audio: false,
video: {
facingMode: {
exact: "environment"
}
}
};
video = createCapture(constraints);
} else {
console.log("NOT mobile device");
video = createCapture(VIDEO);
}
video.hide();
// Initialize the Image Classifier method with MobileNet and the video as the second argument
classifier = ml5.imageClassifier('MobileNet', video, modelReady);
button = createButton('Take a snapshot');
button.position(20, 350);
button.mousePressed(snapshot);
}
function draw() {
image(video, 20, 0, 260, 180);
fill(bgCol);
// rect(75,190,50,50);
}
function isMobileDevice() {
return (typeof window.orientation !== "undefined") || (navigator.userAgent.indexOf('IEMobile') !== -1);
}
function modelReady() {
// Change the status of the model once its ready
select('#status').html('Model Loaded');
// Call the classifyVideo function to start classifying the video
classifyVideo();
}
// Get a prediction for the current video frame
function classifyVideo() {
classifier.predict(gotResult);
}
// When we get a result
function gotResult(err, results) {
// The results are in an array ordered by probability.
select('#result').html(results[0].className);
// console.log(results[0].className);
const desiredClasses = [
'mortarboard', 'banjo', 'hotdog', 'hot dog'
];
select('#result').style('background-color', '').style('font-size', '1em');
for (c in desiredClasses) {
if (results[0].className.includes(desiredClasses[c])) {
select('#result').style('background-color', 'red').style('font-size', '3em');
}
}
select('#probability').html(nf(results[0].probability, 0, 2));
classifyVideo();
}
function snapshot() {
img = image(video, 20, 300, 340, 230);
classifier.predict(img, function(err, results) {
if (err) {
console.error(err);
}
else {
console.log(results);
output = results.map(e => {
return e.className + " (" + nf(e.probability, 0, 2) + ")"
}).join("\n");
console.log(output)
noStroke();
fill('rgb(255,255,255)');
rect(00, 240, 360, 60);
fill(0)
textAlign(CENTER);
text(output, 180, 250);
}
});
}